

The Physical Model of Peaked-Spectrum Sources

Presenter: GuangChen Sun

Advisors: Xuelei Chen, Xin Zhang, Yichao Li

01 Background

02 The Physical Model

03 Results

04 Conclusions

PART ONE

Background

Background

- Peaked-Spectrum (PS) sources are a type of AGN
- Described by frequency turnovers in spectra
- There are two possible explanations for the PS sources:
- The Youth Model
- The Frustration Model

Youth or Frustration Model?

Youth Model

- Early stages of massive radioloud AGN
- Explained by synchrotron selfabsorption (SSA)
- Popular in the past
- However, there are too many PS sources compared to large AGNs

Frustration Model

- Extremely dense gas in AGN central environment
- Explained by free-free absorption (FFA)
- Recently gained a lot of attention

Background

- There are three different types of FFA and one SSA
- The fit of all four models is not ideal
- Some models (spectral aged) achieved a good fit, but they require extreme physical environments to explain.
- So later, many papers used general curve models
- Why not try to combine them?

Source PKS B0008-421

PART TWO

The Physical Model

The Physical Model

The key is understanding the optical depth τ

not to scale

The Physical Model

Considering the effects of these three optical depths τ ($\tau_{distant}$, τ_{SSA} , τ_{FFA}) together, we get the following equation:

- K: the normalization constant of flux density
- α_{thin} : the spectral index of the optically thin region

PART THREE

Results

Results

Source PKS B0008-421

- Our model can fit this source well
- No extreme physical scenarios are needed
- Then...
- We applied the new model to the catalog of the GLEAM survey, cross-verification with other surveys, and identified 4,036 well-observed PS sources out of 304,942 sources.

- α_{thin} : the spectral index of the optically thin region
- α_{thick} : the spectral index of the optically thick region
- $v_{\rm p}$: the frequency at the peak
- α_{thin} - α_{thick} shows a remarkable regular distribution
- Sources with lower v_p have larger α_{thick}
- Sources with higher v_p have smaller α_{thick} and more dispersed α_{thin}

α_{thick} distribution

Different mechanisms of optical depth dominate different α_{thick} distribution

$\alpha_{\rm thin}$ distribution

There are no significant differences between the different α_{thin} distribution

PART FOUR

Conclusions

- We propose a model with good fit and physical explanation.
- Sources with lower v_p have a larger α_{thick} The sky of ultra-long wavelength might be darker
- Internal FFA dominates the peaks of most PS sources The "Frustration" Model seems to be the better choice
- α_{thick} is the key to distinguishing different absorption mechanisms
- Hope the HongMeng project (DSL) can make significant contributions in the future

Thank you for your attention!