Paon4 : a testbench for Idrogen boards

O. Perdereau on behalf of the PAon4/Idrogen project

IJCLab, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Hangzhou, July 2024

O. Perdereau

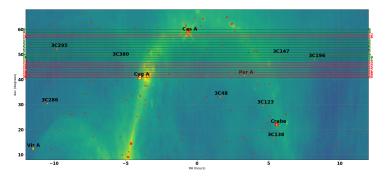
Idrogen@PAON4

24/07/24 1/20

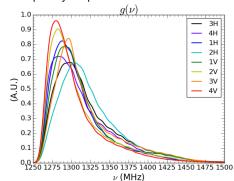
PAON4

Collaboration between LAL (now IJCLab, Orsay), Obs. de Paris (Meudon, Nançay), IRFU/CEAEA (Saclay) Characteristics ·

- 4 antennas ($\emptyset = 5m$, ~ $3deg^2$ FOV) in Nancay (~ 200 km south of Paris)
- 2 polar./antenna
- Frequency band 1250 1500 MHz (~ 1275 - 1480 MHz fiducial)
- transit observations e.g. ~ 24h scans
- ± 20 degrees from zenith •
- test bench for electronics, DAQ, on-line computing, analysis
- R.Ansari et al., MNRAS 493 (2020) 2. 2965

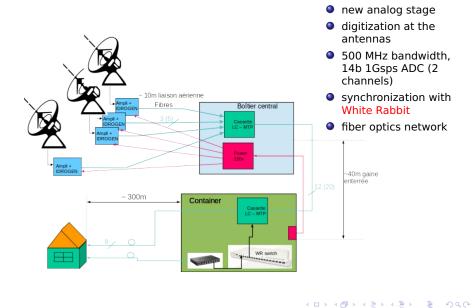

 \bigcirc live-time ~ 10%

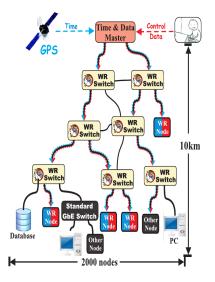
24/07/24 2/20


PAON4 operations

- 2014-8 : building, tests and upgrades (blind channel for calibration)
- 2017-8 : fight against a systematic perturbation (bird's effect)
- 2018-9 : regular observations 24h \mapsto 1 week
 - check complex gain stability
 - determination of geometry + phases with GNSS satellites

Main systematics


- wide bandwidth (250 MHz)
- frequency translation with LO
- long coaxial connexions 10+10+50m
- ⇒ impedance adaptation mismatch(es)
- ⇒ standing waves in the cable(s) (time/condition dependent)
- to improve on this : digitize on the antennas with IDROGEN boards
- → avoid systematics from transport
 of broad band analog signal(s) on
 long distances


Frequency responses of PAON4 channels

< E

new architecture

White Rabbit basics

- Extension of ethernet protocol for precise time distribution & deterministic latency
- all nodes have same clock frequency
- clock distributed over network
- uses PTP (Precision Time Protocol) for accurate latency determination (master ↔ slave dialog over ethernet)
- and DDMTD for clock phase adjustment and tracking
- each node provide PPS and clock signals
- open hard-, firm- and software developped by CERN, NIKHEF, GSI,... (IEEE standard) ... now SAFRAN
- implemented (improved hardware) in IDROGEN board's design

イロト イポト イヨト イヨト

Time & frequency distribution : T+REFIMEVE

Uncertainty routine

10-14

10-14

10 ns

10 ns

10-14

10.14

dedicated

10-15

2×10-16

10 ns

2ns to 100ps

2×10-17

10.18 Station de Radioastronomie

For long time stability reference clock is mandatory

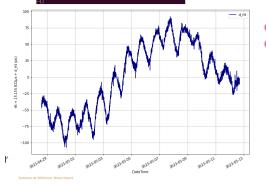
- International time reference provider
- Optical fiber distribution

NPL Teddington PhLAM IRCICA pro	Signal provide	Stability @1s	Stability @1day	
FOTON ENSAT UPL SYRTE SOLEIL APC INCLAB DMHE URGP LERMA ISMO LACLE LKB UPERS APQ				
SHOM	Radiofrequency	1ª pillar - 10 MHz (White Rabbit)	10-12	10-15
Marégraphe de BREST FOTON RENNES		2 nd pillar - 1 GHz	10-13	3×10-16
Radio Observatory Nançay	Time	1ª pillar (White Rabbit)	1 ns	1 ns
LP2N ESAF LPHY TRAM		2 nd pillar	20-50 ps	500 ps
Network Status LAAS LCAR GEOAZUR	Optical frequency (194,5 THz - 1542 nm)	Today	10-15	3×10-16
Operational Operational Implemented before end 2020 T-REFIMEVEGetension		Expected progress in 5 years	10-16	2×10 ⁻¹⁷

O. Perdereau

WhiteRabbit supervision

	Irène Joliot-Curie
WR debugging	Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
Small operating system in the WR core	ncluded in
Serial communication by	USB or


Ethernet

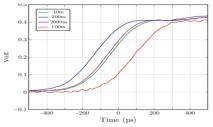
- Status of the link : delays, transceiver
- Control of the link · PPS, configuration
- WR supervision at LAC laboratory
- Monitoring at user equipment level
 - Fibers time propagation delays
 - 1 4Km of fiber
 - 5 levels of netwok stratum
 - 10 days of measurement
 - Zen-TP system

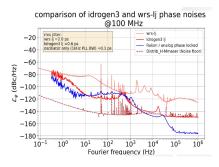
Esc = exit	
TAI Time:	Thu, Jan 1, 1970, 00:03:48
wru1: Link up (RX: 685, IPv4: BOOTP running	, TX: 281), mode: WR Slave Locked Calib
PTP status: slave	
Synchronization status:	
Servo state: Phase tracking: Synchronization source: Aux clock status:	TRACK_PHASE On
Timing parameters:	
Slave PHY delays: Total link asymmetry:	349132 ps TX: 46407 ps, RX: 168643 ps TX: 46407 ps, RX: 175043 ps

WR PTP Core Sync Monitor v 1

IDROGEN

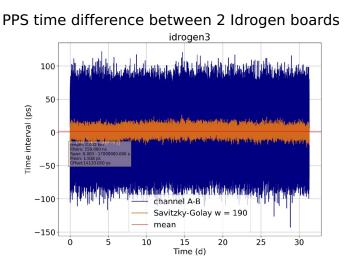
- generic acquisition board (DAQGEN IN2P3 program),
 IJCLab/SYRTE/Nançay collaboration
- Altera ARRIA 10 FPGA
- improved WR implementation
- additional mezzanine board (FMC connector) (several items under developments : ADC, timing, ...)
- optional MTCA (rack) connector (not for PAON4)
- connections :
 - USBs (FW upload, configuration, slow control)
 - 40gb QSFP+ (data + config/slow control)
 - 1Gb SFP+ (WR link)




イロト イロト イヨト イヨト

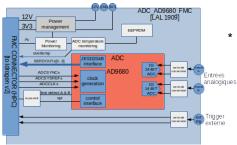
WR with IDROGEN (SYRTE)

- qualification and calibration of IDROGEN boards WR parameters
- two boards, 10,100, 200 m, 2 km optical fiber link to WR switch (master)


 $\rightarrow \sim 100$ ps dispersion of PPS (preliminary WR params calibration)

イロト イヨト イヨト イヨト

Idrogen WR stability (SYRTE)

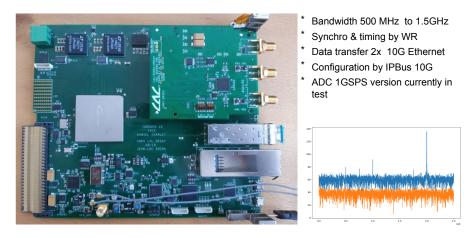


Excellent long term stability; working on improving short term perfs

	<	< 🗗 ►	◆夏≯	◆夏≯	Ξ.	596
O. Perdereau	ldrogen@PAON4		2	24/07/24		11/20

Mezzanine FMC ADC 1GSPS

- * The motivation of the development of a new mezzanine instead of an off-the-shelf ADC mezzanine :
 - * includes : its own PLL.
 - * ADC clock source : External clock
- Mezzanine main features :
 - * VITA57.1 (FMC)
 - * ADC 9680
 - * 2 channels
 - * 14 bits
 - * 1 GSPS
 - * JESD204
 - * 2GHz analog bandwidth
 - * External trigger in

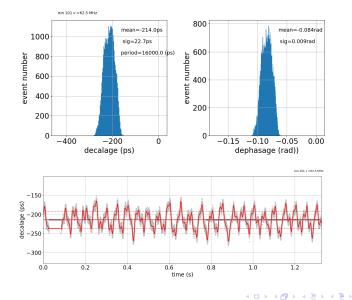


O. Perdereau

IDROGEN + mezzanine FMC ADC 500MSPS

O. Perdereau

Idrogen@PAON4


ADC samples timing checks (I)

Basic setup :

- RF signal generator (pure sine wave, $\nu_0 = 62.5 MHz$)
- two Idrogen + (prototype) mezzanine boards
- R/O of (16k samples) data chunks (events) with WR timestamps for a pair of channels
- FFT + x-correlation (if same timestamp)
- phase of v_0 mode (1/chunk)
- $\phi(\nu_0) = 2\pi \delta t / T(\nu_0) = 2\pi \delta t \nu_0$ if timing difference δt between channels

イロン イワン イヨン 一日

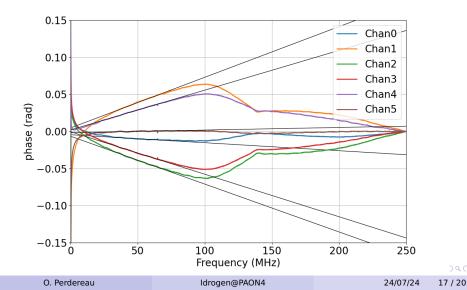
Examples (PRELIMINARY)

O. Perdereau

Idrogen@PAON4

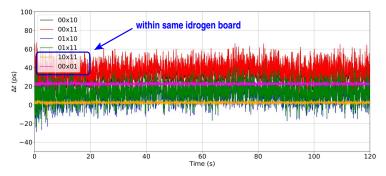
▲ E ▶ E ∽ Q ⊂ 24/07/24 15 / 20

ADC samples timing checks (II)


Setup :

- RF white noise signal generator
- R/O of (8k samples) data chunks with WR timestamps for all (4) channels
- FFT + x-correlation (if same timestamp) of each chunk + time average
- $\phi(\nu) = 2\pi \delta t / T(\nu_0) = 2\pi \delta t \nu_0$ if timing difference δt between channels
- use phase vs frequency relation to check for δt
- Caveats :
 - ▶ use of prototype boards \Rightarrow 500 Msps / 250 MHz bandwidth + broad low-pass filter at 250 MHz \Rightarrow aliasing if $\nu \gtrsim 100$ MHz
 - setup unqualified at O(10 ps) timing accuracy

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●


Some results (PRELIMINARY)

Time averaged phase vs frequency measurements

Latest results (PRELIMINARY)

Averaged timing differences (in 40-70 MHz interval) vs time

- channels from the same ADC : very stable (and small) timing diffference (setup? board design?)
- channels from different boards : averaged timing differences between boards of O(100 ps) (changes from one startup to the other) ⊕ O(50 ps) "fast" time variations (internal PLL?)

A (1) < A (1) </p>

Other developments (2022-2023)

O. Perdereau

24/07/24 19 / 20

Outlook

- Exploring a path toward 'on feed numerization'
- IDROGEN board :
 - generic acquisition board with WR implementation
 - applied in radio-astronomy for numerization on the antennas (+several other projects in HEP, NP, astro...)
 - UDP streamer for high data rate transmission OK
 - IPbus for configuration and slow control over ethernet OK
- WR timing performances ~ OK down to O(15 ps)
- other parts, including a new software correlator ~ ready
- ADC mezzanine for PAON4 :
 - firmware (ADC R/O, WR timing and data transmission over UDP link) seems OK with 500 Ms/s ADC
 - promising timing perfs, startup scheme under study to improve reproducibility & stability
 - Tests of nominal ADC (1 Gs/s) will begin after summer break
- integration tests and operations on the sky with PAON4 soon (with fingers crossed !)

O. Perdereau

Idrogen@PAON4

24/07/24 20 / 20