Measuring 21cm global spectrum on the lunar orbit ---High-frequency payload in Hongmeng project

Fengquan Wu Payload development team NAOC

21 cm Cosmology Workshop 2024 Hangzhou July 23

21cm global spectrum — Environment effect

RFI contamination

Ionosphere effect

Ground effect

Overview of Hongmeng (鸿蒙) project(PI: Xuelei Chen) Long wavelength array on lunar orbit (Pre-study project in CAS)

- Whole sky imaging at frequency below 30MHz
- Global spectrum measurement at frequency below 120MHz

Antenna

Loaded ring

Satellite body

System design of global spectrum satellite

signal

Two-port noise wave for 50 Ohm LNA receiver

 $X_{\rm unc}T_{\rm unc} + X_{\rm cos}T_{\rm cos} + X_{\rm sin}T_{\rm sin} + X_{\rm NS}T_{\rm NS} + X_{\rm L}T_{\rm L} = T_{\rm cal}$

Use 5 calibrators to solve for noise parameters at each frequency point

Four-port noise wave for differential receiver

The whole system can be modelled as a four-port microwave network

Consider the case where the antenna connected to port 1 is a temperature source and the other ports are only involved in signal reflection.

$$T_1(V_1) = \frac{|V_1|^2}{8Z_0} \frac{|1 - \Gamma_1|^2}{(1 - |\Gamma_1|^2)} \quad V_1^+(V_1) = \frac{V_1(1 - \Gamma_1)}{2(1 - \Gamma_1\Gamma_{in1})} \quad \Gamma_{in1} = V_1^-/V_1^+$$

$$\begin{bmatrix} V_1^-\\ V_2^-\\ V_3^-\\ V_4^- \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14}\\ S_{21} & S_{22} & S_{23} & S_{24}\\ S_{31} & S_{32} & S_{33} & S_{34}\\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix} \begin{bmatrix} V_1^+\\ V_2^+\\ V_3^+\\ V_4^+ \end{bmatrix} \quad \begin{array}{c} \Gamma_2 = V_2^+/V_2^-\\ \Gamma_3 = V_3^+/V_3^-\\ \Gamma_4 = V_4^+/V_4^- \end{array}$$

With the equation above, we can obtain all V_i^- and V_i^+ with respect to T_1 , the equivalent temperature of antenna.

The cross-correlation power is $P_c = \frac{V_{2o}^* V_{3o}}{2Z_0}$, with $V_{2o} = G_2 V_2^- \sqrt{(1 - |\Gamma_2|^2)}$ $V_{3o} = G_3 V_3^- \sqrt{(1 - |\Gamma_3|^2)}$

Similarly, we can calculate cross-correlation power generated by noise source and uncorrelated part of two LNAs noise.

Multi-resistor calibration for high impedance receiver

 $P = g[(4R_aKT + |V_{amb}|^2) |S_0|^2 + \frac{I_{noise}^2}{I_{noise}^2}Z^2 + \frac{V_{noise}^2}{I_{noise}^2}]$

$$S_{0} = \frac{Z_{0}}{Z_{a} + Z_{0}} \frac{e^{-\gamma l} (1 + \Gamma_{r})}{(1 - S_{22}\Gamma_{r})(1 - \Gamma_{a}\Gamma_{in})}$$

Simulation & Error propagation analysis

Calibration Error in 21-centimeter Global Spectrum Experiments

Shijie Sun et.al. Universe 2024, 10(6), 236

Testing of 50 Ohm LNA receiver channel

66.2375 deg

210 180 150

Field Testing Site in Xinjiang

Tianlai array (天籁阵列) ---Radio interferometer array for dark energy

Field Testing in Xinjiang

Ground plate

Field Testing in Antarctica

<complex-block>

((A))

RF enviroment

Ground penetrating radar

Spectra after Relative calibration

Noise wave parameters

Noise wave parameters evolution

Noise parameters for different calibration periods

- 30KHz frequency resolution
- 25s integration time

Self-calibration precision

- 30KHz frequency resolution
- 13000s integration time

Load : \pm 0.018K Open Short : \pm 0.13K

Sky observation

30KHz frequency resolution

Sky average spectrum (18 hours)

Testing of other receiver channel

• Prototype

Temperature variation of key components

S11 of antenna and receiver

Antenna

Receiver

Noise wave parameters calculation

Open, Short Spectrum and fitting residual

5m + Open, 5m + Short Spectrum and fitting residual

7.63KHz frequency resolution, 12000s integration time

calibration residuals of antenna simulator

50 Ohm Load as antenna simulator

7.63KHz frequency resolution, 12000s integration time

Sky observation

Sky temperature varies over time averaged over 50-100MHz

Sky temperature measured from 10-09 8:00 to 10-12 8:00

(Here we didn't consider the radiation loss caused by soil.)

7.63KHz frequency resolution, 16600s observation time

- Multi-receiver design
- Antenna simulator residuals < 0.2K
- Field testing is still going on
- Collaboration is welcome

Thanks !