Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	000

Simulation on hunting HI filament with pairwise stacking

Speaker: Diyang Liu (NEU)

😊 Collaborators:

Yichao Li (NEU), Denis Tramote (XJTLU), Furen Deng (NAOC),

Jiaxing Wang (NEU), Yougang Wang (NAOC), Xin Zhang (NEU) and Xuelei Chen (NAOC)

Introduction	Data and methods	Result	Conclusion	Appendix
•0000	00	0000	00	000

Cosmic web

Definition

At large scales (above ~ 10 Mpc), the distribution of galaxies (and dark matter) shows an intricate interconnected network.

- nodes (dense regions typically hosting clusters of galaxies)
- voids (vast low-density regions)
- filaments (lines that connecting nodes)

Formation

- though: asymmetrical gravitional growth
- begin: in the Dark Ages
- process: voids became emptier, nodes and filaments grew P
- now: nearly all galaxies are aligned along the filaments

Importance

formation and evolution of galaxies and structures.

Diyang Liu (NEU)

Introduction	Data and methods	Result	Conclusion	Appendix
0000	00	0000	00	000

Filament features

- Dominated in the mass fraction
- Align halos and galaxies
- Spin
- Low density (Typical density contrast $\delta < 20$)

(Aragón-Calvo et al. 2010, MNRAS, 408, 2163)

Diyang Liu (NEU)

Low density

Hard to directly dectect

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	000

Tracing filament

Diyang Liu (NEU)

HI filament stacking simulation

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	000

FAST --most sensitive

	Diameter	Beam size	Frequency resolution	System temperature	Sky coverage
FAST	500 m	3 arcmin	7.6 kHz	20 K	~2500 deg2
Parkes	64 m	14 arcmin	1 MHz	21 К	~1300 deg2

FAST HI surveys

- The FAST All Sky HI survey (FASHI, Zhang et al. 2024)
- The Commensal Radio Astronomy FasT Survey (CRAFTS; Li et al. 2018)
- FAST HI IM drift scan cosmic survey (Li et al. 2023)

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	000

Work flow

Aims

- check the dectability using FAST HI IM survey
- devolpe a pipeline for filament stacking
- find out the optimize strategy for filament stacking

Introduction	Data and methods	Result	Conclusion	Appendix
00000	•0	0000	00	000

Simulation data

TNG project

A suite of large-volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code Arepo (Springel 2010).

Run [†]	TNG50-1	TNG100-1	TNG300-1
Volume [cMpc ³]	51.7 ³	106.5^{3}	302.6 ³
$L_{\rm box}, [{\rm cMpc}/h]$	35	75	205
$N_{\text{GAS,DM}}$	2160^{3}	1820^{3}	2500^{3}
N _{Tracer}	1×2160^{3}	2×1820^{3}	1×2500^{3}
$m_{\mathrm{baryon}}, [\mathrm{M} \odot / h]$	5.7×10^{4}	9.4×10^{5}	7.6×10^{6}
$m_{\rm DM}, [{ m M}\odot/h]$	3.1×10^{5}	5.1×10^{6}	4.0×10^{7}

Select the snapshot 091 (at $z \sim 0.1$) of TNG100-1.

FAST HI intensity map construction

- calculate the brightness temperature
- considering the RSD effect
- add beam smoothing effect (3 arcmin)
- add thermal noise ($T_{sys}=20\,{
 m K},\Delta t=48\,{
 m s}$)

SDSS MGS-like catalog construction

- Exclude non-galaxy subhalos (Subfind_flag labeled)
- Apply gas and star mass cut ($2 imes 10^8\,M_{\odot}$)
- Magnitude cut ($r_p < 17.77$ for Main Galaxy Sample)

Introduction	Data and methods	Result	Conclusion	Appendix
00000	○ ●	0000	00	000

Pairwise stacking

Assumption

Galaxy pairs are connected by straight filaments.

Pairing condition

- Transversal separation: $6-14\,h^{-1}{
 m Mpc}$
- Radial separation: $< 5 \, h^{-1} {
 m Mpc}$

To select

- A pair of galaxies that belongs to different clusters
- Filaments perpendicular to the line of sight

Stacking procedures

- Extract the 2D individual pair map (2D-IPM)
- Construct the aligned 2D-IPM
- Construct the 2D pairwise-stacked map (2D-PSM)

R.A.

troduction	Data and methods	Result	Conclusion
0000	00	•000	00

Subtract contaimination

Subtract halo contribution

- Assuming a symmetrical halo profile.
- Shadowed area were masked during halo fitting

Subtract galaxy contribution

- Mask radius: $120 \, h^{-1} {
 m kpc}$ (FAST main beam size)
- Mask frequency width: $0.3\,\mathrm{MHz}~(60\,\mathrm{km\,s^{-1}})$

Mask MGS-like galaxies (Bright)

- No significant changes after masking!
- No evident impact of thermal noise!

Mask all potential galaxies (Bright + Faint)

- Significantly reduced after masking!
- Evident impact of thermal noise!

Diyang Liu (NEU)

07/23/2024

Appendix

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	000	00	000

Signal estimation

- Use Gaussian function to estimate filament width
- Filament: within $1\,\sigma$
- Backround: within $3-4\,\sigma$

Comparison

	r	T_{f}	T _{bg}	SNR
	$[h^{-1}Mpc]$	$[\mu K]$	[µK]	
		HI only	y	
Unmasked	1.46	35.6 ± 2.6	0.0 ± 1.7	20.9
Mask MGS	1.46	36.3 ± 2.5	0.1 ± 1.9	19.1
Mask all	1.72	11.4 ± 0.7	0.0 ± 0.4	28.5
	HI + noise			
Unmasked	1.46	35.2 ± 2.8	0.1 ± 1.7	20.7
Mask MGS	1.41	34.7 ± 2.6	0.2 ± 1.7	20.4
Mask all	1.56	11.3 ± 1.7	0.2 ± 1.6	7.1

- A consistent estimation of filament radius about $1.5 h^{-1} \mathrm{Mpc}$
- 'Mask all' decreased to $11.3 \,\mu K$, indicating that faint galaxies contribute to about 70% of the total HI filament brightness temperature.

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	000

Background level

	r	$T_{\rm f}$	T _{bg}	SNR	
	$[h^{-1}Mpc]$	[µK]	[µK]		
		HI only			
Unmasked	1.46	35.6 ± 2.6	0.0 ± 1.7	20.9	
Mask MGS	1.46	36.3 ± 2.5	0.1 ± 1.9	19.1	
Mask all	1.72	11.4 ± 0.7	0.0 ± 0.4	28.5	
	HI + noise				
Unmasked	1.46	35.2 ± 2.8	0.1 ± 1.7	20.7	
Mask MGS	1.41	34.7 ± 2.6	0.2 ± 1.7	20.4	
Mask all	1.56	11.3 ± 1.7	0.2 ± 1.6	7.1	

- Without noise, background level decreased for 'Mask all' case, indicating that it's galaxy contributed.
- With noise, the backgroud level maintianed stable across three mask cases, indicating that impact of thermal noise dominated only when all galaxy contributions were removed.

Background level = Background variation + Themal noise

However, in reality we can only mask bright galaxies.

Large shallow survey vs Narrow deep survey

Given total integral time,

- narrow deep sky survey: compress the thermal noise only
- arge shallow sky survey: compress both the thermal noise and background variation.

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	000

HI column density

HI Column density

$$egin{aligned} rac{N_{
m HI}}{
m cm^{-2}} \end{pmatrix} = 1.82 imes 10^{12} igg(rac{T_{
m f}}{\mu
m K} igg) igg(rac{\Delta v}{
m km~s^{-1}} igg) \end{aligned}$$

- Take $T_{
m f}=11.3\,\mu{
m K}$ and $\Delta v=60\,{
m km~s^{-1}}$, gives us $N_{
m HI}=1.2 imes10^{15}\,{
m cm^{-2}}$

HI density parameter

$$\Omega_{
m HI}^{
m f}(z) = rac{
ho_{
m H}(z)}{
ho_{
m c}(0)} = 7.6 imes 10^{-3} \left(rac{T_{
m f}}{
m mK}
ight) \left(rac{h}{0.7}
ight)^{-1} (1+z)^{-2} E(z)$$

- Substituting $T_{
m f}=11.3\,\mu{
m K}$ gives us $\Omega_{
m HI}^{
m f}(z\simeq0.1)=7.7 imes10^{-5}$

HI clumps thickness

$$N_{
m HI} = rac{\Omega_{
m HI}^{
m f}
ho_{
m c}}{m_{
m HI}} (1+z)^3 \Delta s$$

- Substituting $N_{
 m HI}=1.2 imes 10^{15}\,{
 m cm^{-2}}$ and $\Omega_{
 m HI}^{
 m f}(z\simeq 0.1)=7.7 imes 10^{-5}$, gives us $\Delta s=0.47\,h^{-1}{
 m Mpc}.$
- About 1/3, comparing to 1.5 h⁻¹Mpc, indicating a sparsely distributed compact HI clumps inside filaments.

Diyang Liu (NEU)

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	•0	000

Conclusion

- We employed an end-to-end simulation to investigate the effectiveness of isolating faint HI filament signals from the FAST HI
 intensity mapping survey through the galaxy pairwise stacking method.
- We found that the contributions of those galaxies living in or near the filaments are the dominating term, about 70%, especially the weak sources not detected by optical telescope.
- If we masked all the galaxy contributions, the signal level decrease from $35.2 \pm 1.7 \,\mu\text{K}$ to $11.3 \pm 1.7 \,\mu\text{K}$, with a corresponding HI column density $1.2 \times 10^{15} \,\text{cm}^{-2}$.
- Our simulation showed that a shallow large sky survey of FAST is a good way to do filament stacking.
- We also estimated the HI cloud thickness at $\Delta s = 0.47 h^{-1}$ Mpc, which is much smaller than the filament radius $1.5 h^{-1}$ Mpc, indicating a sparsely distributed compact HI clumps inside filaments.

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	0 •	000

Diyang Liu (NEU)

07/23/2024

15/17

Diyang Liu (NEU)

HI filament stacking simulation

16/17

Introduction	Data and methods	Result	Conclusion	Appendix
00000	00	0000	00	00•

