

THE UNIVERSITY of EDINBURGH

Power spectrum multipoles and clustering wedges during EoR

with Alkistis Pourtsidou

https://orcid.org/0000-0002-4965-8239

ZC & Pourtsidou 2405.05414

See also ZC, to appear in Moriond 2024 proceedings

陈兆庭 (Chen, Zhaoting)

Measuring the 21 cm tomography during EoR • Upper limits from HERA, PAPER, LOFAR and MWA

SKA-Low promises high SNR detection

HERA collaboration 2210.04912

Dreaming of the future with SKA-Low

• High-fidelity images

history

• Coverage of various physical scales

• Relatively fine redshift bin probing throughout the reionization

For the first science product of SKA-Low EoR:

• No high-fidelity images?

- Continuum sky model needs to be **extremely deep and accurate**
- Direction-dependent calibration
- Wide field imaging

 $\bullet \bullet \bullet$

— Foreground subtraction highly non-trivial

For the first science product for SKA-Low EoR:

 No tomographic image **Power spectrum only.**

Diao, **ZC**, X. Chen & Mao **ZC** et al. <u>1812.10333</u> <u>2406.20058</u> - No morphology (e.g. Minkowski Functionals) or map-level inference.

Zhao et al. 2105.03344

For the first science product for SKA-Low EoR:

• No tomographic image

• Fine redshift resolution?

redshift ~ 7-9

100

Sokolowski et al. <u>1610.04696</u>

0.25	0.36	0.49	0.64	0.81
				05 Nov 04 Nov 04 Nov
				03 Nov
				02 Nov
				01 Nov 31 Oct 31 Oct 31 Oct
				30 Oct 30 Oct 29 Oct
20	00	250)	

200 **Frequency** [MHz]

00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 **00:00 12:00**

• Moderate signal-to-noise ratio over a large redshift bin Subject to large anisotropic effects due to RSD and lightcone evolution

> Highly anisotropic, non-Gaussian

$$\times \left(\frac{\Omega_b h}{0.44 \times 0.7}\right)$$

Mao et al. <u>1104.2094</u>

Datta et al. 1109.1284 1402.0508

• Moderate signal-to-noise ratio in a wide redshift bin

- Subject to large anisotropic effects due to RSD and lightcone evolution

$M_{\rm U}$ rray at al. 2010 15121	-		7.
nullay et al. <u>2010.15121</u>	1	.600	
arid RSD inhomogeneous	1	400 -	
gnu KSD, innomogeneous			
recombination, spin temperature	1	200 -	
fluctuation etc.	_ 1	000 -	
Fiducial model similar to the	Мрс	800 -	
"faint" model.	11 X		
Greig & Mesinger <u>1801.01592</u>		600 -	
$\log_{10}[T_{\rm vir}/K], \xi) = (4.7, 65)$		400 -	
		200 -	
		0+	
		0	

9

For the first science product for SKA-Low EoR:

• No tomographic image

• Large light-cone effects Greig et al. <u>2403.14060</u>

- A representation of cylindrical PS is needed, for example multipoles. Raut et al. 1708.02824

Flash course on multipoles

• Crudely speaking, multipoles are weighted averages of cylindrical PS

$$\mu = k_{\parallel}/k, P_{21}^{\ell}(k) = \frac{2\ell+1}{\mu_1 - \mu_0} \int_{\mu_0}^{\mu_1} \mathrm{d}\mu \,\mathcal{P}_{\ell}(\mu) \,P_{21}(k,\mu)$$

Flash course on multipoles

• Crudely speaking, multipoles are weighted averages of cylindrical PS

Problem of degeneracy with 1D monopole • The spherically averaged power spectrum monopole does not probe anisotropy, leading to loss of information and parameter degeneracy:

Problem of degeneracy with 1D monopole • At smaller scales, including the multipoles can help resolve the degeneracy and retrieve more information

 $\xi \times 1.1$

For the first science product for SKA-Low EoR:

• No tomographic image

ZC et al. <u>1812.10333</u> **Power spectrum only.**

- Large light-cone effects
- Greig et al. <u>2403.14060</u>
- Access to various scales?

Diao, **ZC**, X. Chen & Mao 2406.20058 - No morphology (e.g. Minkowski Functionals) or map-level inference.

Zhao et al. 2105.03344

- A representation of cylindrical PS is needed, for example multipoles. Raut et al. <u>1708.02824</u>

• Short baselines, i.e. large scales, may be contaminated by systematics.

MeerKAT DEEP2 2301.11943

Large angular scales are more contaminated

• Short baselines, i.e. large scales, may be contaminated by systematics. — Inference with only small scales. Focusing on EoR physics.

1D monopole does not probe into the bubbles

bubble scales are almost entirely correlated.

"One-bubble" term of the 21cm PS will be completely correlated. Therefore, innerbright, $\bar{x}_{HI} = 0.38$

1D monopole does not probe into the bubbles

Two sets of fiducial parameters similar to "faint" and "bright" model. $(\log_{10}[T_{vir}/K], \xi) = (4.7, 65), (5.1, 150)$

Greig & Mesinger <u>1801.01592</u>

0.8 0.6 0.4 0.2

1D monopole does not probe into the bubbles

For a z-7-9 lightcone, depending on the reionization model, scales beyond 0.2 Mpc⁻¹ may be entirely correlated due to large sizes of the bubbles.

Information in anisotropy

Baseline distribution and corresponding sampling of k-space is explicitly propagated into the calculation

Small scales are not sampled properly

- Short baselines, i.e. large scales, may be contaminated by systematics.
- Sampling in k-space is highly skewed due to baseline distribution

- On small scales, high k_para is massively oversampled.
- Split into clustering wedges to have relatively uniform sampling

• On small scales, high k_para is massively oversampled.

What r 2.5 -

- Short $b_{\overline{a}}$
- On smal

W EoR?

 μ

For the first science product for SKA-Low EoR:

• No tomographic image

Power spectrum only.

- Large light-cone effects
- Greig et al. <u>2403.14060</u>
- Small scales only

Diao, **ZC**, X. Chen & Mao 2406.20058 - No morphology (e.g. Minkowski Functionals) or map-level inference. Zc et al. <u>1812.10333</u> Zhao et al. 2105.03344 Zhao et al. 2105.03344

- A representation of cylindrical PS is needed, for example multipoles. Raut et al. <u>1708.02824</u>

- Clustering wedges to fully utilise anisotropy to decouple small scales

Dissecting into clustering wedges

Extra information can be extracted out of the multipoles by splitting the k-space into clustering wedges:

Information content of multipoles in wedges

Fisher information shows large improvements in the constraining power from including the multipoles. There is also slight improvement in the degeneracy between the parameters.

model		faint			
parameter	fid	mono+avg	multi+avg	mono+wedge	mu
ζ	65	5.124	2.540	3.215	
$\log_{10}[T_{\rm vir}/{\rm K}]$ $\rho_{\zeta \log T_{\rm vir}}$	4.7	0.040	0.020	0.026	
$det[\mathcal{F}]$		102.169	824.186	499.218	22

Conclusion

Using power spectrum multipoles as summary statistics

- **Reduce correlation** at small scales

- Probe into the evolution of ionisation field along the light cone

- Information can be further extracted by partitioning the k-space into wedges

- For SKA-Low with integration time of ~100h, per-cent level constraints on reionization history can be achieved.

yield a factor of ~2.5 improvement.

- Comparing to spherically averaged monopole, multipoles in clustering wedges

Thanks

Fisher Matrix forecasts

Signal covariance through jackknife of simulation lightcones

Noise covariance through baseline distribution and quadratic estmators