
21-cm Cosmology 
from the Largest to the Smallest Scales

Yidong Xu/徐怡冬

National Astronomical Observatory of China (NAOC)

• The Tianlai collaboration

• The SKA collaboration

• The DSL collaboration

2024.7.22 21 cm Cosmology Workshop @ Hangzhou



Dark Matter

Dark Energy

Primordial non-Gaussianity

First Stars & Galaxies

Formation of SMBHs

Cosmic Reionization 

Heating History

The history of structure formation

Credit: CfA/M. Weiss

Dark Ages Cosmic Dawn H Reionization



The 21cm line of HI: 
Exploring the last desert in the observational universe

Credit: NAOJ

Neutral 
hydrogen

Ionized 
hydrogen



21cm 21cm*(1+z)

fields from broadban
d imaging. Figure 13 shows the size

distribut
ions wit

h brightne
ss temperature

threshold
of 6 σT f

or

narrowb
and imaging (top panels)

and those with 3 σT for

broadban
d imaging (bottom

panels).
It is found that using

narrowb
and imaging with B= 0.1 MHz, we

will be
able to

extract t
he intrin

sic islan
d scale usi

ng a brightn
ess temperature

threshold
of 6 σT. A lower threshold

will overestim
ate the

island scales. U
sing the broadban

d imaging with B= 1MHz,

almost all o
f the noises w

ould be eliminated with a threshold

value of 3 σT.
The reconstru

cted distribut
ions are

very similar

to the size distribut
ions shown

in the bottom
panels in

Figure 12, thou
gh the extracted

characte
ristic scales are a bit

Figure 1
1. The δTb

slices (to
p plots) a

nd their
mock images as o

bserved
by the S

KA1-Lo
w core arra

y (bottom
plots). A

ll slices a
re 1 Gpc

on a side
in co-moving sc

ale.

The slice
s in the left c

olumn are 1.67
Mpc thick,

and the obse
rving bandwid

th is 0.1 M
Hz, and

the slice
s in the right

column are 15 M
pc thick,

correspo
nding to an

observin
g bandwid

th of 1 MHz. In each plot, the
top, middle, an

d bottom panels a
re for the island

FAST-n
oSSA, i

slandF
AST-SC

, and island
FAST-R

S

models, re
spective

ly, and
the three columns correspo

nd to reionizat
ion stages with mean neutral f

ractions
of ¯ =x 0.16

H I
, 0.10, a

nd 0.01, fro
m left to right,

respectiv
ely.

11

The Astroph
ysical Journal

, 927:5 (15pp), 2
022 March 1

Wu et al.

fields from broadband
imaging. Figure 13 shows the size

distributio
ns with brightness

temperature threshold
of 6 σT fo

r

narrowba
nd imaging (top panels) and those with 3 σT for

broadband
imaging (bottom panels). It is found that using

narrowba
nd imaging with B= 0.1 MHz, we will be able to

extract th
e intrinsic

island scale usin
g a brightne

ss temperature

threshold
of 6 σT. A lower threshold

will overestim
ate the

island scales. Us
ing the broadband

imaging with B= 1MHz,

almost all of
the noises wo

uld be eliminated with a threshold

value of 3 σT. T
he reconstruc

ted distributio
ns are very similar

to the size distributio
ns shown in the bottom panels in

Figure 12, thoug
h the extracted

characteri
stic scales are a bit

Figure 11
. The δTb

slices (top
plots) and

their mock images as ob
served by

the SKA1
-Low core array

(bottom plots). All
slices are

1 Gpc on
a side in c

o-moving sca
le.

The slices
in the left co

lumn are 1.67 M
pc thick,

and the observ
ing bandwidth

is 0.1 MHz, and the slices
in the right c

olumn are 15 Mpc thick,
correspon

ding to an

observing
bandwidth

of 1 MHz. In each plot, the top, middle, and
bottom panels are

for the island
FAST-n

oSSA, is
landFA

ST-SC, a
nd island

FAST-R
S

models, res
pectively,

and the three columns correspon
d to reionizati

on stages with mean neutral fr
actions of ¯ =x 0.16

H I
, 0.10, an

d 0.01, from
left to right,

respective
ly.

11

The Astrophy
sical Journal,

927:5 (15pp), 20
22 March 1

Wu et al.

fields from broadban
d imaging. Figure 13 shows the size

distributi
ons with

brightnes
s temperature

threshold
of 6 σT f

or

narrowba
nd imaging (top panels) and those with 3 σT for

broadban
d imaging (bottom

panels).
It is found that using

narrowba
nd imaging with B= 0.1 MHz, we

will be
able to

extract th
e intrinsi

c island
scale usi

ng a brightn
ess temperature

threshold
of 6 σT. A lower threshold

will overestim
ate the

island scales. U
sing the broadban

d imaging with B= 1MHz,

almost all o
f the noises w

ould be eliminated with a threshold

value of 3 σT.
The reconstru

cted distributi
ons are very similar

to the size distributi
ons shown in the bottom

panels in

Figure 12, thou
gh the extracted

character
istic scales are a bit

Figure 1
1. The δTb

slices (top
plots) and

their mock images as o
bserved b

y the SK
A1-Low

core arra
y (bottom

plots). Al
l slices a

re 1 Gpc
on a side

in co-moving sca
le.

The slice
s in the left c

olumn are 1.67
Mpc thick,

and the obser
ving bandwid

th is 0.1 MHz, and
the slices

in the right
column are 15 M

pc thick,
correspo

nding to an

observin
g bandwid

th of 1 MHz. In each plot, the
top, middle, an

d bottom panels ar
e for the island

FAST-n
oSSA, i

slandF
AST-SC

, and island
FAST-R

S

models, re
spectivel

y, and the three columns correspo
nd to reionizat

ion stages with mean neutral f
ractions

of ¯ =x 0.16
H I

, 0.10, a
nd 0.01, fro

m left to right,

respectiv
ely.

11

The Astroph
ysical Journal

, 927:5 (15pp), 2
022 March 1

Wu et al.

21cm from Dark Ages, 
Cosmic Dawn, & EoR
à HI in the IGM
à Reionization & first galxies

21cm from 
post-EoR
à HI in halos
à Large-scale 

structure in 
3D



u Baryon Acoustic Oscillations – the cosmological standard ruler 

u The standard ruler of the sound horizon at the last scattering surface 

u rs(zd) = 153.3 ± 2.0 Mpc (Komatsu et al. 2009)

Measuring the large-scale structure with 21cm IM

(E.M. Huff, the SDSS-III team, and the South Pole Telescope team.
Graphic by Zosia Rostomian.)

4 Bassett and Hlozek, 2009

evidence for the acoustic signature in the correlation function and power spectrum.
Extracting the BAO scale from the matter power spectrum remains a thriving area
of research in contemporary cosmology, as we discuss later in Section 1.5 on current
and future BAO surveys.

Fig. 1.1. The Baryon Acoustic Peak (BAP) in the correlation function – the BAP is visible
in the clustering of the SDSS LRG galaxy sample, and is sensitive to the matter density
(shown are models with Ωmh2 = 0.12 (top), 0.13 (second) and 0.14 (third), all with
Ωbh2 = 0.024). The bottom line without a BAP is the correlation function in the pure
CDM model, with Ωb = 0. From Eisenstein et al., 2005 (52).

1.1.2 Cosmological Observables

We now discuss the relevant cosmological observables that are derived from standard
rulers in general, and the BAO in particular. The Baryon Acoustic Oscillations in
the radial and tangential directions provide measurements of the Hubble parameter
and angular diameter distance respectively. The Hubble parameter, H ≡ ȧ/a –
where a is the scale factor of the universe – can be written in dimensionless form
using the Friedmann equation as

E(z) ≡
H(z)

H0
=
√

Ωm(1 + z)3 + ΩDEf(z) + Ωk(1 + z)2 + Ωrad(1 + z)4 , (1.1)

where f(z) is the dimensionless dark energy density and Ωk = − k
H2

0
a2

= 1 − (Ωm +

ΩDE + Ωrad) is the density parameter of curvature with Ωk = 0 corresponding to
a flat cosmos. Ωm,Ωrad are the matter and radiation densities with corresponding
equations of state wi ≡ pi/ρi = 0, 1

3 for i = m, rad respectively.

BAP in the clustering of the SDSS LRG galaxy 
sample (Eisenstein et al. 2005)

44 L. Anderson et al.

Tridiagonal matrices have inverses with exponentially decreasing
off-diagonal terms (Rybicki & Press 1995). Apparently, treating
the off-diagonal covariances as exponentially decreasing with only
weak dependences on separation provides a good approximation.

For P(k), the measurements in k-bins are already fairly indepen-
dent, as one would expect for a near-Gaussian random field. Corre-
lations between bins can occur because of the finite survey volume
and because of non-Gaussianity in the density field. For CMASS,
we find the mean first off-diagonal term of the reduced covariance
matrix is 0.28 (with a standard deviation of 0.06). When the P(k)
measurements are divided by the best-fitting smooth model, Psm(k),
they are, generally, even less correlated. We determine P(k)/Psm(k)
for each mock sample and construct a revised ‘BAO’ covariance ma-
trix from this. We do not use this covariance matrix to perform any
fits – our fits are to the full P(k) and use the original covariance ma-
trix. For the revised covariance matrix, the mean first off-diagonal
term of the correlation matrix is reduced to 0.03 (with a standard
deviation of 0.15). The diagonal elements within this covariance ma-
trix are also reduced in amplitude, reflecting the smaller variance
available once a smooth fit has been removed. The errors derived
from this matrix thus better represent the errors on the measured
BAO; the data when presented as P(k)/Psm(k) are more independent
and provide a more accurate visualization of the measurements.

Fig. 16 displays the measured post-reconstruction values of
P(k)/Psm(k), for the BOSS CMASS sample in DR9, DR10, and
DR11 (from top to bottom), showing the evolution in the signal-to-
noise ratio of the BAO as BOSS has increased its observed footprint.
In the DR11 sample, the third peak is clearly visible. In Fig. 17,
we display the DR11 post-reconstruction P(k)/Psm(k) for the two
BOSS samples; the CMASS sample at zeff = 0.57 is presented in
the top panel and the LOWZ sample at zeff = 0.32 is shown in the
bottom panel. The LOWZ sample possesses a clear BAO feature,
but the signal-to-noise ratio is considerably lower than that of the
CMASS sample.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error bars and the best-fitting model is
displayed with the curves. Both are divided by the best-fitting smooth model.
We note that a finer binning was used in the DR9 analysis.

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fitting model is displayed with the
curve. Both are divided by the best-fitting smooth model.

7 BAO M E A S U R E M E N T S F RO M
ANISOTROPIC CLUS T E RIN G ES T I MATE S

7.1 Anisotropic clustering estimates

In Section 5, we detailed our analysis techniques (multipoles and
wedges statistics), and demonstrated they recover unbiased esti-
mates of the BAO scales both along and perpendicular to line of
sight with similar uncertainties. We now apply these two techniques
to BOSS CMASS sample (at z = 0.57). Fig. 18 displays the multi-
poles, ξ 0, 2, of the DR11 CMASS sample correlation function pre-
and post-reconstruction, using our fiducial binning choice, for the
range of scales fitted (45 < s < 200 h−1 Mpc). For the quadrupole
(ξ 2), we see a dramatic change from the pre- to post-reconstruction
results, as the reconstruction algorithm has removed almost all of
the RSD contribution. Further, an apparent dip is now seen in the
data on scales slightly larger than the peak in the monopole. The
strength of this feature is related to the deviation in ε from 0 (or the
deviation in α⊥ from 1).

Fig. 19 displays the correlation function divided into two wedges
(ξ ||, ⊥), once again with the pre-reconstruction measurements dis-
played in the top panel and the post-reconstruction measurements in
the bottom panel. Reconstruction has made the BAO peak sharper
for both ξ || and ξ⊥. Further, reconstruction has decreased the dif-
ference in their amplitudes as the RSD signal has been reduced.

7.2 DR11 acoustic-scale measurement from anisotropic
clustering

As for our isotropic analysis, the results of our anisotropic BAO fits
to the DR10 and DR11 mocks show significant improvement on
average with reconstruction (see Table 5), and therefore, we adopt
post-reconstruction results as our default. Our consensus value for
the CMASS anisotropic BAO measurement, α|| = 0.968 ± 0.032,
α⊥ = 1.044 ± 0.013, is determined from a combination of the
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Figure 2. Left panel: the measurement errors on the power spectrum at z = 1 for the Tianlai pathfinder (shaded area) and the pathfinder+ (error bars). Right panel:
the relative one with respect to the smooth power spectrum with errors expected from the Tianlai pathfinder+ (shaded area) and the full-scale Tianlai (error bars). The
assumed survey area is 10,000 deg2, and the integration time is one year. The wavenumber bin width for this plot is ∆k = 0.005 h Mpc−1.

spectrum can be obtained by scaling, but the constraints on our
interested parameters are insensitive to the choice of binning.

3. FISHER FORECAST ON THE CONSTRAINT
ON DARK ENERGY

From the power spectrum measurement at a given redshift,
the Fisher information matrix can be written as (Tegmark 1997;
Seo & Eisenstein 2003; Mao et al. 2008)

Fαβ =
∑

k

[
∂Pobs(k)

∂α

∂Pobs(k)
∂β

] /
[∆Pobs(k)]2 . (30)

Here, the free parameters α and β are taken from
{DA(zi),H (zi), bH i

1,i , f (zi), and Pshot,i} for each redshift bin zi .
The nuisance parameters in the model {bH i

1,i , Pshot,i} can be
marginalized by selecting the submatrix of F−1

αβ with only the
appropriate columns and rows. We can then derive the mea-
surement errors on the expansion and structure growth history
parameters.

For the Tianlai pathfinder and pathfinder+ experiment, the
observation frequency range is 700–800 MHz, and we divide
this frequency band into three bins with equal bandwidth and
obtain estimates of measurement errors for the corresponding
redshift bins. For the planned full-scale Tianlai experiment, the
frequency range of 400–1420 MHz is equally divided into eight
bins; the bin size in this latter case is larger than in the pathfinder
case, but the bin size ∆z does not really matter in the end.

We plot the measurement errors on the angular diameter
distance DA(zi), the Hubble expansion rate H (zi), and the
growth rate f (zi) in the left, central, and right panels of Figure 3,
respectively, for the pathfinder+ (blue error bars) and the full-
scale Tianlai experiments (red error bars). The integration time
is assumed to be one year in all cases. We see that the pathfinder+
experiment can obtain a useful measurement on DA(z) and H (z)
at z = 1. For the growth rate f, the errors are larger, but we
could still obtain a useful check against certain modified gravity

models. The full-scale experiment can offer good precision
throughout the interested parameter ranges.

From the cosmographic measurements DA(z),H (z), f (z),
one can constrain the cosmological model parameters. In this
paper, we consider a redshift-dependent equation of state for the
dark energy parameterized in the form of (Chevallier & Polarski
2001)

w(z) = w0 + wa[1 − a(z)] = w0 + wa

z

1 + z
. (31)

The Fisher matrix of the dark energy parameters w0 and wa

is obtained by converting from the parameter space {pα} =
{DA,i,Hi, fi} to the dark energy parameter space {qm} =
{w0, wa, ΩX}, using

FDE
mn =

∑

α,β

∂pα

∂qm

Fdis
αβ

∂pβ

∂qn

. (32)

To help break the parameter degeneracy between parameters,
we combine the BAO data from the Tianlai intensity mapping
observation with the data obtained from CMB observations. The
total Fisher matrix is given by (Wang et al. 2009)

F tot
αβ = F CMB

αβ +
∑

i

F IM
αβ (zi), (33)

where F IM
αβ (zi) is the Fisher matrix derived from the ith redshift

bin of the LSS intensity mapping and F CMB
αβ is the CMB Fisher

matrix.
The 1σ and 2σ measurement error contours for the variable

dark energy equation of state parameters w0 and wa are shown
in Figure 4 for the full-scale Tianlai experiment. Here, we have
assumed that the frequency range probed is 400–1420 MHz, the
usable survey area is 10,000 deg2, and the integration time is
one year. The measurement error is obtained based on a joint
constraint with the CMB data, but no other observational data.
We expect σw0 ≈ 0.0815 and σwa

≈ 0.210. This is comparable

6
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Figure 3. Measurement errors on the angular diameter distance DA (left panel), the Hubble expansion rate H (central panel), and the growth rate f (z) = d ln G/d ln a
(right panel). The integration time is assumed to be one year. Note here that the number of redshift bins is larger than the one we used for forecasting the constraint on
the dark energy equation of state just to make the error bars visible.

Figure 4. Constraints on the dark energy equation of state parameters w0 and
wa from full-scale Tianlai experiments. The two contours are for 1σ and 2σ
constraints, respectively. The integration time is one year and the survey area is
assumed to be 10,000 deg2.

with the precision of stage IV dark energy experiments as
defined in the Dark Energy Task Force (DETF) report (Albrecht
et al. 2006).

4. FISHER FORECASTS FOR THE
PRIMORDIAL NON-GAUSSIANITY

Typical single-field slow roll inflation models predict that the
primordial density fluctuations follow the Gaussian distribution,
though the density distribution deviates from Gaussianity as
the structures grow and nonlinearities appear. Detection of
or constraint on the primordial non-Gaussianity will provide
invaluable information concerning the origin of the universe.

Compared with the observable galaxies that correspond to
high-density peaks of the matter density distribution, the neutral
hydrogen gas that exists in galaxies of almost all mass scales is a
less biased tracer of the underlying matter density, allowing the
primordial non-Gaussianity to be investigated from a different
perspective.

The non-Gaussianity of the primordial density fluctuations
can induce a scale-dependent and redshift-dependent H i bias,
similar to other biased tracers (Dalal et al. 2008; Matarrese &

Verde 2008). This effect can be used to constrain the primordial
non-Gaussianity. Camera et al. (2013) has demonstrated that a
small but compact array working at ∼400 MHz could possibly
place tight constraints on fNL with an error close to σfNL ∼ 1.
We will make a forecast for determining such constraints with
the Tianlai experiment.

Once the LSS of the 21 cm brightness temperature fluctua-
tions are mapped out, this same set of data can also be used to
measure the bispectrum of H i gas distribution. The H i bispec-
trum consists of contributions from primordial non-Gaussianity,
the nonlinear gravity evolution, and the nonlinear H i bias. The
relative importance of primordial non-Gaussianity increases to-
ward higher redshifts (Sefusatti & Komatsu 2007; Jeong &
Komatsu 2009). The 21 cm experiment can in principle observe
the LSS at relatively high redshifts from the ground without
being affected significantly by the atmosphere, which is an ad-
vantage of this method, though at present 21 cm observations
are still limited to lower redshifts than for optical observations.
Using the 21 cm bispectrum from the dark ages, Pillepich et al.
(2007) found that very low frequency radio observations with
high angular resolution could potentially detect primordial non-
Gaussianity with fNL ∼ 1. Here, we focus on the H i bispectrum
after reionization and assess the constraining power of the 21 cm
bispectrum measured by the Tianlai experiment.

4.1. Constraints on fNL from the H i Power Spectrum

The non-Gaussianity in the primordial density fluctuations
can result in a scale-dependence in the halo bias, which orig-
inates from coupling between large- and small-scale modes
(Dalal et al. 2008; Matarrese & Verde 2008). For the stan-
dard local-type primordial non-Gaussianity, the scale-dependent
non-Gaussian correction to the linear halo bias, to leading or-
der, is (see, e.g., Desjacques et al. 2011; Adshead et al. 2012;
D’Aloisio et al. 2013)

∆bd (k, z) = 2 fNL (bG
1 − 1) δc

M(k, z)
, (34)

where bG
1 is the linear halo bias for the Gaussian density field,

δc = 1.686 is the critical overdensity for spherical collapse,
and M(k, z) relates the density fluctuations in Fourier space,
δk , to the primordial curvature perturbation, Φk , via the Poisson
equation:

δk(z) = M(k; z)Φk, (35)
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Table 10. Forecasted fractional uncertainties on !HIbHI, and
!HI assuming the SKA1-MIDWideBand1Survey and following
the methodology in Pourtsidou et al. (2017). For the!HI con-
straints, we utilise the full HI power spectrumwith RSDs. Note
that the assumed redshift bin width is"z = 0.1, but we show
the results for half of the bins for brevity. The cosmological
constraints are reported in Figures 11 and 12.

z σ (!HIbHI)/(!HIbHI) σ (!HI)/!HI

0.4 0.002 0.009

0.6 0.003 0.011

0.8 0.004 0.013

1.0 0.005 0.017

1.2 0.006 0.022

1.4 0.008 0.029

1.6 0.010 0.036

1.8 0.013 0.046

2.0 0.016 0.058

2.2 0.020 0.072

2.4 0.025 0.091

2.6 0.030 0.115

2.8 0.038 0.145

3.0 0.046 0.183

primary beams and bands. Note that, when considering mea-
surements with the interferometer, we assume a strict non-linear
cut-off to define the maximum wavevector in the Fisher matrix,
kmax = 0.2hMpc−1 at all redshifts. This is a conservative choice,
much smaller than the instrumental cut-off.

The finite number of HI samples in the intensity maps also
results into a shot noise contribution on the power spectrummea-
surements. In hydrodynamic simulations, Villaescusa-Navarro
et al. (2018b) found that the amplitude of the HI shot-noise is neg-
ligible at z ≤ 5 (see also Castorina & Villaescusa-Navarro 2017)
and therefore BAO measurements through HI IM will barely be
affected by this. They also found values of the linear HI bias equal
to 0.84, 1.49, 2.03, 2.56, 2.82, and 3.18 at redshifts 0, 1, 2, 3, 4, and
5, respectively. While the HI bias is essentially scale-independent
down to k#1h Mpc–1 at z = 1, at redshifts z ≥ 3 the HI bias is
scale-dependent already at k= 0.3hMpc−1. In the following, we
forecast the constraints on the linear bias bHI by the SKA1 IM
surveys, however, they will also be the first surveys to investigate
the scale-dependence of the HI clustering signal for all redshifts
0< z < 6.

SKA1-MID
The expected error on the measurement of the HI power spec-
trum from the Wide Band 1 Survey is shown in Figure 18 (top
panel) for a redshift bin of width "z = 0.1 centred at z = 0.6.
Keeping the cosmological parameters fixed to the Planck 2015 cos-
mology (Ade et al. 2016a), the only unknown in PHI is (!HIbHI).
Employing a Fisher matrix analysis, we calculate the expected con-
straints on!HIbHI (Pourtsidou, Bacon, & Crittenden 2017), which
are summarised in the first column of Table 10. Using RSDs, the
degeneracy between !HI and bHI can be broken and the resulting
constraints are presented in the second column of Table 10.

SKA1-LOW
Here, we present predictions on the Deep SKA1-LOW Survey.
Other possibilities (in terms of sky coverage and observation time)

Figure 18. Upper panel: HI detection with the SKA1-MID Wide Band 1 Survey, showing
the expected signal power spectrum (black solid) andmeasurement errors (cyan) from
the HI auto-correlation power spectrum. The assumed k binning is "k= 0.01 Mpc−1.
Lower panel: HI detection with the Deep SKA1-LOW Survey, signal power spectrum
(solid black line) and measurement errors (cyan band) at z= 4. We have used a
k-binning"k= 0.01 Mpc−1 and a redshift bin"z= 0.3.

as well as an optimisation study will be presented in an upcoming
publication.

In Figure 18 (bottom panel), we show the predicted HI signal
power spectrum neglecting the effect of RSDs, together with the
predicted measurement errors at z = 4 for the Deep SKA1-LOW
Survey. Performing a Fisher matrix analysis following themethod-
ology in Pourtsidou et al. (2017) we can constrain !HI and bHI.
Our derived constraints are quoted in Table 11. As we can see, IM
with the Deep SKA1-LOW Survey probes the largely unexplored
‘redshift desert’ era and can give us valuable information on the
evolution of the HI abundance and bias across cosmic time.

Finally, in Figure 19, we show the derived constraints for both
SKA IM surveys (i.e. Wide Band 1 Survey and Deep SKA1-LOW
Survey) on !HI compared to current measurements.

At this point, we note that our forecasts have ignored residual
foreground contamination and other systematic effects. Assessing
these effects using simulations and exploring the possibility of per-
forming BAO measurements using this survey is the subject of
ongoing work.

5.2. Cosmological probes using HI IM

5.2.1. Baryon acoustic oscillations and RSDs

As already mentioned in Section 4.2.1, BAOs can provide robust
measurements on the angular diameter distance and Hubble rate
as a function of redshift. Such measurements can in turn be used
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!HI assuming the SKA1-MIDWideBand1Survey and following
the methodology in Pourtsidou et al. (2017). For the!HI con-
straints, we utilise the full HI power spectrumwith RSDs. Note
that the assumed redshift bin width is"z = 0.1, but we show
the results for half of the bins for brevity. The cosmological
constraints are reported in Figures 11 and 12.
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primary beams and bands. Note that, when considering mea-
surements with the interferometer, we assume a strict non-linear
cut-off to define the maximum wavevector in the Fisher matrix,
kmax = 0.2hMpc−1 at all redshifts. This is a conservative choice,
much smaller than the instrumental cut-off.

The finite number of HI samples in the intensity maps also
results into a shot noise contribution on the power spectrummea-
surements. In hydrodynamic simulations, Villaescusa-Navarro
et al. (2018b) found that the amplitude of the HI shot-noise is neg-
ligible at z ≤ 5 (see also Castorina & Villaescusa-Navarro 2017)
and therefore BAO measurements through HI IM will barely be
affected by this. They also found values of the linear HI bias equal
to 0.84, 1.49, 2.03, 2.56, 2.82, and 3.18 at redshifts 0, 1, 2, 3, 4, and
5, respectively. While the HI bias is essentially scale-independent
down to k#1h Mpc–1 at z = 1, at redshifts z ≥ 3 the HI bias is
scale-dependent already at k= 0.3hMpc−1. In the following, we
forecast the constraints on the linear bias bHI by the SKA1 IM
surveys, however, they will also be the first surveys to investigate
the scale-dependence of the HI clustering signal for all redshifts
0< z < 6.

SKA1-MID
The expected error on the measurement of the HI power spec-
trum from the Wide Band 1 Survey is shown in Figure 18 (top
panel) for a redshift bin of width "z = 0.1 centred at z = 0.6.
Keeping the cosmological parameters fixed to the Planck 2015 cos-
mology (Ade et al. 2016a), the only unknown in PHI is (!HIbHI).
Employing a Fisher matrix analysis, we calculate the expected con-
straints on!HIbHI (Pourtsidou, Bacon, & Crittenden 2017), which
are summarised in the first column of Table 10. Using RSDs, the
degeneracy between !HI and bHI can be broken and the resulting
constraints are presented in the second column of Table 10.

SKA1-LOW
Here, we present predictions on the Deep SKA1-LOW Survey.
Other possibilities (in terms of sky coverage and observation time)

Figure 18. Upper panel: HI detection with the SKA1-MID Wide Band 1 Survey, showing
the expected signal power spectrum (black solid) andmeasurement errors (cyan) from
the HI auto-correlation power spectrum. The assumed k binning is "k= 0.01 Mpc−1.
Lower panel: HI detection with the Deep SKA1-LOW Survey, signal power spectrum
(solid black line) and measurement errors (cyan band) at z= 4. We have used a
k-binning"k= 0.01 Mpc−1 and a redshift bin"z= 0.3.

as well as an optimisation study will be presented in an upcoming
publication.

In Figure 18 (bottom panel), we show the predicted HI signal
power spectrum neglecting the effect of RSDs, together with the
predicted measurement errors at z = 4 for the Deep SKA1-LOW
Survey. Performing a Fisher matrix analysis following themethod-
ology in Pourtsidou et al. (2017) we can constrain !HI and bHI.
Our derived constraints are quoted in Table 11. As we can see, IM
with the Deep SKA1-LOW Survey probes the largely unexplored
‘redshift desert’ era and can give us valuable information on the
evolution of the HI abundance and bias across cosmic time.

Finally, in Figure 19, we show the derived constraints for both
SKA IM surveys (i.e. Wide Band 1 Survey and Deep SKA1-LOW
Survey) on !HI compared to current measurements.

At this point, we note that our forecasts have ignored residual
foreground contamination and other systematic effects. Assessing
these effects using simulations and exploring the possibility of per-
forming BAO measurements using this survey is the subject of
ongoing work.

5.2. Cosmological probes using HI IM

5.2.1. Baryon acoustic oscillations and RSDs

As already mentioned in Section 4.2.1, BAOs can provide robust
measurements on the angular diameter distance and Hubble rate
as a function of redshift. Such measurements can in turn be used
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Figure 2. The photograph shows the Tianlai Pathfinder dish and cylinder arrays. The dish array is
an array of 16, fully-steerable, on-axis dish antennas, each 6 m in diameter. A dual-linear polarization
feed is located at the focus of each dish. The cylinder array consists of 3, fixed, cylindrical reflectors,
each 15 m wide and 40 m long, placed side-by-side (in the E-W direction) with their long axes oriented
along the N-S direction. A linear array of dual-linear polarization feeds is arranged along their focal
lines. The photograph is taken looking toward the southeast.

Figure 3. A schematic diagram of the Tianlai dish and cylinder arrays are shown here. The dishes are
arranged in two concentric circles of radius 8.8m and 17.6m around a central dish. The cylinder array
consists of 3 cylindrical reflectors. Currently, the central 12.8m parts of the cylinders are equipped
with receiver feeds. The number of feeds for the reflectors are 31, 32 and 33 respectively (from East to
West).
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21 cm Cosmology – to avoid/distinguish from 
astrophysical uncertainties!

Strategy 1 -- Looking for features not/less affected by later baryonic physics

ü The cosmological standard ruler – 21 cm BAO  è Dark Energy

ü Go to ultra-large scales è primordial non-Gaussianity (PNG) & Inflation physics



u Inflation à Initial density 

perturbations à Structure 

Formation à LSS today

21 cm cosmology – the Primordial Non-Gaussianity

(Courtesy: NASA)

* Probing LSS can yield 

information about 

inflationary physics.



u PNG imprint on the CMB:

- Angular bispectrum measurement

u PNG effects on LSS:

- High-order correlations of galaxy distribution – bispectrum, trispectrum (e.g. Sefusatti & Komatsu 2007)

- Abundance of rare objects – cluster number density (e.g. Afshordi & Tolley 2008; Dalal et al. 2008)

- The large-scale clustering of halos – scale-dependent bias (e.g. Dalal et al. 2008; Desjacques et al. 2011)

The LSS as a Probe of the Primordial Non-Gaussianity

Figure 5. Planck modal reconstruction of the CMB temperature reduced bispectrum, plotted using
several density contours [132].
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u The HI bias factors: 

halo bias

* For the standard local type PNG, the scale-dependent 

non-Gaussian correction to the linear halo bias: 

* The observed HI power spectrum: 

where

Constraints on fNL from the HI Power Spectrum

The Astrophysical Journal, 798:40 (10pp), 2015 January 1 Xu, Wang, & Chen

Figure 3. Measurement errors on the angular diameter distance DA (left panel), the Hubble expansion rate H (central panel), and the growth rate f (z) = d ln G/d ln a
(right panel). The integration time is assumed to be one year. Note here that the number of redshift bins is larger than the one we used for forecasting the constraint on
the dark energy equation of state just to make the error bars visible.

Figure 4. Constraints on the dark energy equation of state parameters w0 and
wa from full-scale Tianlai experiments. The two contours are for 1σ and 2σ
constraints, respectively. The integration time is one year and the survey area is
assumed to be 10,000 deg2.

with the precision of stage IV dark energy experiments as
defined in the Dark Energy Task Force (DETF) report (Albrecht
et al. 2006).

4. FISHER FORECASTS FOR THE
PRIMORDIAL NON-GAUSSIANITY

Typical single-field slow roll inflation models predict that the
primordial density fluctuations follow the Gaussian distribution,
though the density distribution deviates from Gaussianity as
the structures grow and nonlinearities appear. Detection of
or constraint on the primordial non-Gaussianity will provide
invaluable information concerning the origin of the universe.

Compared with the observable galaxies that correspond to
high-density peaks of the matter density distribution, the neutral
hydrogen gas that exists in galaxies of almost all mass scales is a
less biased tracer of the underlying matter density, allowing the
primordial non-Gaussianity to be investigated from a different
perspective.

The non-Gaussianity of the primordial density fluctuations
can induce a scale-dependent and redshift-dependent H i bias,
similar to other biased tracers (Dalal et al. 2008; Matarrese &

Verde 2008). This effect can be used to constrain the primordial
non-Gaussianity. Camera et al. (2013) has demonstrated that a
small but compact array working at ∼400 MHz could possibly
place tight constraints on fNL with an error close to σfNL ∼ 1.
We will make a forecast for determining such constraints with
the Tianlai experiment.

Once the LSS of the 21 cm brightness temperature fluctua-
tions are mapped out, this same set of data can also be used to
measure the bispectrum of H i gas distribution. The H i bispec-
trum consists of contributions from primordial non-Gaussianity,
the nonlinear gravity evolution, and the nonlinear H i bias. The
relative importance of primordial non-Gaussianity increases to-
ward higher redshifts (Sefusatti & Komatsu 2007; Jeong &
Komatsu 2009). The 21 cm experiment can in principle observe
the LSS at relatively high redshifts from the ground without
being affected significantly by the atmosphere, which is an ad-
vantage of this method, though at present 21 cm observations
are still limited to lower redshifts than for optical observations.
Using the 21 cm bispectrum from the dark ages, Pillepich et al.
(2007) found that very low frequency radio observations with
high angular resolution could potentially detect primordial non-
Gaussianity with fNL ∼ 1. Here, we focus on the H i bispectrum
after reionization and assess the constraining power of the 21 cm
bispectrum measured by the Tianlai experiment.

4.1. Constraints on fNL from the H i Power Spectrum

The non-Gaussianity in the primordial density fluctuations
can result in a scale-dependence in the halo bias, which orig-
inates from coupling between large- and small-scale modes
(Dalal et al. 2008; Matarrese & Verde 2008). For the stan-
dard local-type primordial non-Gaussianity, the scale-dependent
non-Gaussian correction to the linear halo bias, to leading or-
der, is (see, e.g., Desjacques et al. 2011; Adshead et al. 2012;
D’Aloisio et al. 2013)

∆bd (k, z) = 2 fNL (bG
1 − 1) δc

M(k, z)
, (34)

where bG
1 is the linear halo bias for the Gaussian density field,

δc = 1.686 is the critical overdensity for spherical collapse,
and M(k, z) relates the density fluctuations in Fourier space,
δk , to the primordial curvature perturbation, Φk , via the Poisson
equation:

δk(z) = M(k; z)Φk, (35)

7
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After the completion of cosmic reionization, the HI gas in the Universe is mostly distributed

in galaxies hosted by halos. Therefore, we model the HI bias factors as halo bias factors weighted

by the neutral hydrogen mass hosted by these halos (Gong et al. 2011):

bHI
i (z) =

∫Mmax

Mmin
dM n(M,z)MHI(M) bi(M,z)

ρHI
, (8)

for i = 1 and 2, where ρHI is the mass density of HI gas, n(M,z) is the halo mass function for which

we use Sheth & Tormen’s formalism (Sheth & Tormen 1999), MHI(M) is the HI mass in a halo of

mass M , and b1(M,z) and b2(M,z) are halo bias parameters. The mass density of HI clouds is

given by

ρHI =

∫ Mmax

Mmin

dM n(M,z)MHI(M). (9)

Following Gong et al. (2011), we take Mmin = 108 h−1M" for halos to retain their neutral gas

(Loeb & Barkana 2001), and take Mmax = 1013 h−1M" for the gas to have sufficient time to cool

and form galaxies.

As for the relation between the HI gas mass MHI and the host halo mass M , we use the

fitting result by Gong et al. (2011), which is based on numerical simulation and consistent with

observations:

MHI(M) = A×
(

1 +
M

c1

)b (

1 +
M

c2

)d

, (10)

for M > 1010M", and MHI(M) = Xgal
HI (Ωb/Ωm)M with Xgal

HI = 0.15 for M ≤ 1010M". The best-fit

parameters are A = 2.1×108, c1 = 1.0×1011, c2 = 4.55×1011, b = 2.65, and d = −2.64 for redshift

z = 1. As the MHI - M relation does not change much from z = 1 to z = 3 (Gong et al. 2011), we

use the fixed values of these parameters throughout our calculation.

The halo bias factors can be obtained from the halo model (see Cooray & Sheth 2002 for

a review). The linear and the first non-linear bias factors of halos are (Scoccimarro et al. 2001;

Mo et al. 1997)

b1(M,z) = 1 + ε1 + E1, (11)

b2(M,z) = 2 (1 + a2) (ε1 + E1) + ε2 + E2, (12)

where

ε1 =
qν − 1

δsc(z)
, ε2 =

qν

δsc(z)

(

qν − 3

δsc(z)

)

, (13)

and

E1 =
2p/δsc(z)

1 + (qν)p
,

E2

E1
=

1 + 2p

δsc(z)
+ 2ε1. (14)

Here a2 = −17/21, ν ≡ δ2sc(z)/σ
2(M), and δsc(z) = 1.686/G(z) is the critical overdensity required

for spherical collapse at z, extrapolated to the present time using linear theory. For Sheth &

Tormen’s halo mass function (Sheth & Tormen 1999), p ≈ 0.3, and q = 0.707.
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Table 2
The Predicted 1σ Errors of fNL Using the H i Ppower

Spectrum Measured by Tianlai

Pathfinder Pathfinder+ Full Scale

Nfeed per cylinder 32 72 256

σ local
fNL

1504 161 14.1

where

M(k; z) = 2
3

k2 T (k) G+(z) c2

Ωm H 2
0

. (36)

Here, T (k) is the matter transfer function normalized to unity
on large scales, c is the speed of light, and G+(z) = g(0)G(z) is
the growth factor of the growing mode of density perturbations,
in which g(0) = (1 + zi)−1G−1(zi) with zi being the initial
redshift, and G(z) is the linear growth factor normalized to
unity at z = 0. The corrected linear halo bias is b1(k,M, z) =
bG

1 (M, z) + ∆bd (k,M, z).
The power spectrum of the density fluctuations of H i gas

is PH i(k, z) =
[
bH i

1 (k, z)
]2

PL(k, z), where PL(k, z) is the
linear matter power spectrum and the scale-dependent H i bias
bH i

1 (k, z) is related to the corrected linear halo bias via the
model described in Section 2.1. The observed power spectrum in
redshift space after averaging over angles in k space is (Peacock
1997)

Ps(k, z) = aP
0 (β) PH i(k, z), (37)

where aP
0 (β) = 1 + (2/3)β + (1/5)β2 with β = Ω0.55

m (z)/bH i
1 .

We apply the same Fisher matrix as Equation (30), but here
we take fNL as the single parameter and fix all of the other
cosmological parameters.

When adding information from all of the available wavenum-
bers in the Fisher matrix, kmax is limited by the Nyquist fre-
quency, kNyq = π/resolution, which arises from the non-zero
beam size of the cylinder array (Seo et al. 2010), as well as
by the nonlinear wavenumber cutoff, knonl, above which the
linear power spectra are not accurate. Here, we adopt conserva-
tive values for knonl by requiring σ (R = π/2knonl; z) = 0.5 at
each redshift bin (Seo & Eisenstein 2003). Therefore, kmax =
MIN{kNyq, knonl}. Effectively, kmax is limited by the Nyquist
wavenumber for pathfinder and pathfinder+, while for the full-
scale Tianlai, kmax is mostly set by the nonlinear cutoff, except
for the highest redshift bin. On the other hand, kmin is set by the
scale defined by the size of each redshift bin.

Using the same survey parameters and redshift bins as in
Section 3, we find that the constraint on the nonlinear parameter
fNL for the local model is quite weak for the pathfinder and
pathfinder+ experiments. With the full-scale Tianlai experiment,
we can achieve σ local

fNL
∼ 14. The exact numbers of the predicted

1σ errors for Tianlai pathfinders and for the full-scale Tianlai
are listed in Table 2.

4.2. Constraints on fNL from the H i Bispectrum

On large scales, the matter bispectrum is well described by the
tree-level expression and the loop corrections remain very small
(Tasinato et al. 2013; Gong & Takahashi 2014). Higher-order
terms such as the trispectrum could contribute significantly to
the bispectrum of high-density peaks (Sefusatti 2009; Jeong
& Komatsu 2009), but as the H i gas is much less biased
than observable galaxies—for the Tianlai experiment, the H i
bias is not far from one—we expect such contribution to be
less significant, though the exact amount cannot be obtained

without going through lengthy calculations. Here, we neglect
the higher-order terms and account only for the tree-level matter
bispectrum, and we reserve the investigation of the contribution
from matter trispectrum to the H i bispectrum to future works. If
such a contribution is significant, then it would increase the H i
bispectrum and we would obtain a stronger constraint on fNL;
therefore, our current estimate may be regarded as a relatively
conservative one.

Since we are interested in predicting the constraining power of
H i bispectrum observations on the primordial non-Gaussianity,
i.e., the parameter fNL, in the following, we will focus on the
reduced H i bispectrum, QH i, which is much less sensitive to
other cosmological parameters (Sefusatti & Komatsu 2007). In
the real experiments, we always measure the 21 cm brightness
temperature in redshift space. Similar to the tree-level expresion
for the observed galaxy bispectrum (Sefusatti & Komatsu 2007),
the reduced H i bispectrum in redshift space after averaging over
angles in k space is

Qs(k1, k2, k3) =
aB

0 (β)
[
aP

0 (β)
]2

[
1

bH i
1

Qtree(k1, k2, k3) +
bH i

2

(bH i
1 )2

]
,

(38)
where aB

0 (β) = 1 + (2/3)β + (1/9)β2 converts the bispectrum
from real space to redshift space, and Qtree is the reduced tree-
level bispectrum of underlying matter. The first term includes the
contributions from primordial non-Gaussianity and nonlinear
gravitational evolution, and the second term represents the
contribution from the nonlinear bias of H i gas.

The reduced matter bispectrum can be written as the sum of
two contributions:

Qtree(k1, k2, k3) = QI(k1, k2, k3) + QG(k1, k2, k3)

= BI(k1, k2, k3)
PL(k1) PL(k2) + (2 perm.)

+
BG(k1, k2, k3)

PL(k1) PL(k2) + (2 perm.)
, (39)

where + (nperm.) stands for the sum of n additional terms
permuting k1, k2, and k3. The matter bispectrum due to gravity
alone, BG, is given by the second-order perturbation theory
(Fry 1984; Bernardeau et al. 2002), and the matter bispectrum
contributed from primordial non-Gaussianity, BI, is related to
the bispectrum of curvature perturbations, BΦ, by

BI(k1, k2, k3) = M(k1; z)M(k2; z)M(k3; z) BΦ(k1, k2, k3).
(40)

We consider two models of primordial non-Gaussianity here,
i.e., the local model and the equilateral model, but the same
forecast can also be applied to other models of interest. The local
model is physically motivated, in this case the contributions from
the squeezed triangular configurations dominate. The leading
contribution to the f local

NL expansion of the bispectrum of the
curvature perturbation is

B local
Φ (k1, k2, k3) # 2 f local

NL [PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)
+ PΦ(k3)PΦ(k1)]

= 2 f local
NL ∆2

Φ

[
1

k
4−ns

1 k
4−ns

2

+ (2 perm.)

]

,

(41)

where ∆Φ ≡ PΦ/kns−4, and PΦ(k) is the curvature power
spectrum. The equilateral model is a good approximation to
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increases toward higher redshifts (Sefusatti & Komatsu 2007; Jeong & Komatsu 2009). The 21

cm experiment can in principle observe the large scale structure at relatively high redshifts from

the ground without being affected significantly by the atomosphere, and this is an advantage

of this method, though at present the 21 cm observation is still limited to lower redshifts than

the optical observations. The 21 cm intensity mapping is much more efficient with large survey

volume without resolving individual galaxies. Using the 21 cm bispectrum from the dark ages,

Pillepich et al. (2007) found that very low frequency radio observations with high angular resolution

could potentially detect primordial non-Gaussianity with fNL ∼ 1. Here we focus on the HI

bispectrum after reionization, and assess the constraining power of the 21 cm bispectrum measured

by Tianlai experiment.

4.1. Constraints on fNL from the HI Power Spectrum

The non-Gaussianity in the primordial density fluctuations can result in a scale-dependence

in the halo bias, which originates from coupling between large and small scales modes (Dalal et al.

2008; Matarrese & Verde 2008). For the standard local type primordial non-Gaussianity, the

scale-dependent non-Gaussian correction to the linear halo bias, to the leading order, is (see e.g.

Desjacques et al. 2011; Adshead et al. 2012; D’Aloisio et al. 2013)

∆bd(k, z) =
2 fNL (bG1 − 1) δc

M(k, z)
, (34)

where bG1 is the linear halo bias for the Gaussian density field, δc = 1.686 is the critical overdensity

for spherical collapse, and M(k, z) relates the density fluctuations in Fourier space, δk, to the

primordial curvature perturbation, Φk, via the Poisson equation:

δk(z) = M(k; z)Φk, (35)

where

M(k; z) =
2

3

k2 T (k)G+(z) c2

ΩmH2
0

. (36)

Here T (k) is the matter transfer function normalized to unity on large scales, c is the speed of

light, and G+(z) = g(0)G(z) is the growth factor of the growing mode of density perturbations, in

which g(0) = (1+zi)−1G−1(zi) with zi being the initial redshift, and G(z) is the linear growth factor

normalized to unity at z = 0. The corrected linear halo bias is b1(k,M, z) = bG1 (M,z)+∆bd(k,M, z).

The power spectrum of the density fluctuations of HI gas is PHI(k, z) =
[

bHI
1 (k, z)

]2
PL(k, z),

in which PL(k, z) is the linear matter power spectrum, and the scale-dependent HI bias bHI
1 (k, z)

is related to the corrected linear halo bias via the model described in section 2.1. The observed

power spectrum in redshift space after averaging over angles in k space is (Peacock 1997)

Ps(k, z) = aP0 (β)PHI(k, z), (37)

* Most prominent on very large scale – suitable for intensity mapping

* Camera et al. (2013): a small but compact array working at ∼ 400 MHz 

could possibly achieve σfNL ∼ 1. 
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Table 2
The Predicted 1σ Errors of fNL Using the H i Ppower

Spectrum Measured by Tianlai

Pathfinder Pathfinder+ Full Scale

Nfeed per cylinder 32 72 256

σ local
fNL

1504 161 14.1

where

M(k; z) = 2
3

k2 T (k) G+(z) c2

Ωm H 2
0

. (36)

Here, T (k) is the matter transfer function normalized to unity
on large scales, c is the speed of light, and G+(z) = g(0)G(z) is
the growth factor of the growing mode of density perturbations,
in which g(0) = (1 + zi)−1G−1(zi) with zi being the initial
redshift, and G(z) is the linear growth factor normalized to
unity at z = 0. The corrected linear halo bias is b1(k,M, z) =
bG

1 (M, z) + ∆bd (k,M, z).
The power spectrum of the density fluctuations of H i gas

is PH i(k, z) =
[
bH i

1 (k, z)
]2

PL(k, z), where PL(k, z) is the
linear matter power spectrum and the scale-dependent H i bias
bH i

1 (k, z) is related to the corrected linear halo bias via the
model described in Section 2.1. The observed power spectrum in
redshift space after averaging over angles in k space is (Peacock
1997)

Ps(k, z) = aP
0 (β) PH i(k, z), (37)

where aP
0 (β) = 1 + (2/3)β + (1/5)β2 with β = Ω0.55

m (z)/bH i
1 .

We apply the same Fisher matrix as Equation (30), but here
we take fNL as the single parameter and fix all of the other
cosmological parameters.

When adding information from all of the available wavenum-
bers in the Fisher matrix, kmax is limited by the Nyquist fre-
quency, kNyq = π/resolution, which arises from the non-zero
beam size of the cylinder array (Seo et al. 2010), as well as
by the nonlinear wavenumber cutoff, knonl, above which the
linear power spectra are not accurate. Here, we adopt conserva-
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fNL
∼ 14. The exact numbers of the predicted

1σ errors for Tianlai pathfinders and for the full-scale Tianlai
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(38)
where aB

0 (β) = 1 + (2/3)β + (1/9)β2 converts the bispectrum
from real space to redshift space, and Qtree is the reduced tree-
level bispectrum of underlying matter. The first term includes the
contributions from primordial non-Gaussianity and nonlinear
gravitational evolution, and the second term represents the
contribution from the nonlinear bias of H i gas.

The reduced matter bispectrum can be written as the sum of
two contributions:

Qtree(k1, k2, k3) = QI(k1, k2, k3) + QG(k1, k2, k3)

= BI(k1, k2, k3)
PL(k1) PL(k2) + (2 perm.)

+
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PL(k1) PL(k2) + (2 perm.)
, (39)

where + (nperm.) stands for the sum of n additional terms
permuting k1, k2, and k3. The matter bispectrum due to gravity
alone, BG, is given by the second-order perturbation theory
(Fry 1984; Bernardeau et al. 2002), and the matter bispectrum
contributed from primordial non-Gaussianity, BI, is related to
the bispectrum of curvature perturbations, BΦ, by

BI(k1, k2, k3) = M(k1; z)M(k2; z)M(k3; z) BΦ(k1, k2, k3).
(40)

We consider two models of primordial non-Gaussianity here,
i.e., the local model and the equilateral model, but the same
forecast can also be applied to other models of interest. The local
model is physically motivated, in this case the contributions from
the squeezed triangular configurations dominate. The leading
contribution to the f local

NL expansion of the bispectrum of the
curvature perturbation is

B local
Φ (k1, k2, k3) # 2 f local

NL [PΦ(k1)PΦ(k2) + PΦ(k2)PΦ(k3)
+ PΦ(k3)PΦ(k1)]

= 2 f local
NL ∆2

Φ

[
1

k
4−ns

1 k
4−ns

2

+ (2 perm.)

]

,

(41)

where ∆Φ ≡ PΦ/kns−4, and PΦ(k) is the curvature power
spectrum. The equilateral model is a good approximation to
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Table 11 Forecast fractional uncertainties on HI parameters for
intensity mapping with the Deep SKA1-LOW Survey, following the
methodology in Pourtsidou et al. (2017).

z æ(≠HIbHI)/(≠HIbHI) æ(≠HI)/≠HI

3.15 0.010 0.08
3.45 0.011 0.09
3.75 0.012 0.10
4.05 0.014 0.12
4.35 0.015 0.14
4.65 0.018 0.17
4.95 0.021 0.21
5.25 0.024 0.26
5.55 0.029 0.33
5.85 0.035 0.42

of redshift. Such measurements can in turn be used to con-
strain dark energy models and the curvature of the Universe
(Bull et al., 2015b,a; Witzemann et al., 2018). The same is
true for RSDs, which can measure the growth rate, a cru-
cial ingredient for instance in constraining modified gravity
models. In this section we focus on what can be achieved
with the Wide Band 1 Survey. Exploring the same for Deep
SKA1-LOW Survey is the subject of ongoing work.

The relatively poor angular resolution of SKA1-MID in
single-dish mode at high redshifts/low frequencies will par-
tially smear out the shape of the BAO peak along the angular
direction. Nevertheless, SKA1-MID can still provide com-
petitive constraints on BAO measurements and its derived
quantities using the HI intensity mapping technique. Fol-
lowing the Fisher matrix forecasting method described in
Bull et al. (2015b); Bull (2016), Fig. 10 shows the expected
constraints as a function of redshift on the angular diame-
ter distance D A and Hubble rate H while Fig. 11 shows the
same for the growth rate f æ8. We see that the constraints
are still quite competitive when comparing to concurrent
surveys (e.g. Euclid like). The high redshift resolution of the
HI intensity mapping survey, makes it particularly fit for
line of sight measurements, such as H(z) and the growth
rate.

However, at frequencies ∫ … 800 MHz, the angular
smoothing is so large that the BAO feature might be hard
to extract from the angular direction. This depends on how
well we can deconvolve the beam given the signal to noise.
Even in this worst case scenario, the frequency resolution
will be good enough to allow for a detection of the radial
BAO. By means of numerical simulations incorporating the
cosmological signal, instrumental effects and the presence
of foregrounds, Villaescusa-Navarro et al. (2017) demon-
strated that the position of the radial BAO peak can be mea-
sured with percent precision accuracy through single-dish
observations in the Band 1 of SKA1-MID.

5.2.2 Ultra-large scale effects

One of the "transformational" measurements expected
from HI intensity mapping with the Wide Band 1 Survey are
the constraints on the power spectrum on ultra-large scales
(past the equality peak). This is an area where a single dish
survey with SKA1-MID can excel given its low resolution,
but large survey speed (Alonso et al., 2015c). Such measure-
ments can provide hints on new physics that only materi-
alise on this ultra-large scales.

One example of such an effect is Primordial non-
Gaussianity (PNG). In particular, PNG of the local type
fNL introduces a scale-dependent correction to clustering
bias (Dalal et al., 2008; Matarrese & Verde, 2008) such that
bHI / fNL/k2. The 1/k2 term makes this effect particularly
relevant on very large scales (small k) where statistical de-
tectability is severely limited due to cosmic variance and
large scale systematic effects. Using HI IM only we fore-
cast æ( fNL) = 2.8, assuming Band 1 for SKA dishes and UHF
band for the MeerKAT dishes. Note that our calculations
take into account the telescope beams and marginalise
over the biases. While it is not able to achieve æ( fNL) < 1,
as opposed to more futuristic SKA upgrades (see Cam-
era et al., 2013a), thus distinguishing between single-field
and multi-field inflation, it will be an improvement on
æPlanck( fNL) = 5.0.

Another type of very large scale signatures are the so
called General Relativistic (GR) effects. These GR effects
introduce corrections to the tracers’ transfer function as
leading to a set of terms which are usually gathered together
as a single contribution. They are an important prediction
of GR over the very largest distances that it is possible to
probe observationally, and so constitute a valuable test of
alternative gravitational theories (Hall et al., 2013; Lom-
briser et al., 2013; Baker & Bull, 2015). Alonso et al. (2015d)
has shown that these effects are not detectable in the sin-
gle tracer case due to cosmic variance. However, it will be
crucial to correctly model these relativistic corrections in
future large-scale structure surveys, in order not to bias the
estimation of other ultra-large scale effects such as primor-
dial non-Gaussianity (Camera et al., 2015b).

It is possible to overcome cosmic variance with the multi-
tracer (MT) technique (Seljak, 2009), where one combines
two differently biased dark matter tracers in such a way
that the fundamental statistical uncertainty coming from
cosmic variance can be bypassed. We updated the forecasts
of Alonso & Ferreira (2015) and Fonseca et al. (2015) for fNL
and GR effects using the multi-tracer technique with HI IM
with SKA1 in combination with an overlapping 10,000deg2

Euclid-like survey and 14,000deg2 LSST-like photometric
surveys. In Table 12 we show the forecast marginal errors
on fNL and GR effects for 3 different sets of cosmological
parameters: Case 1 – marginal errors on fNL without in-
cluding GR effects; Case 2 – marginal errors on fNL includ-
ing Lensing and GR effects all together; Case 3 – marginal
errors on fNL including Lensing and each GR effect indi-
vidually. Note that all of the ≤ parameters have a fiducial

Could potentially achieve                  with the multi-tracer technique (Seljak, 2009)
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from primordial non-Gaussianity and non-linear gravitational evolution, and the second represents

the contribution from non-linear bias of HI gas.
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where + (n perm.) stands for the sum of n additional terms permuting k1, k2, and k3. The mat-

ter bispectrum due to gravity alone, BG, is given by the second order perturbation theory (Fry

1984; Bernardeau et al. 2002), and the the matter bispectrum contributed from primordial non-

Gaussianity, BI, is related to the bispectrum of curvature perturbations, BΦ, by
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We consider two models of primordial non-Gaussianity here, i.e. the local model and the
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where ∆Φ ≡ PΦ/kns−4, and PΦ(k) is the curvature power spectrum. The equilateral model is a

good approximation to the higher derivative models (Creminelli 2003) and the DBI inflationary

model(Alishahiha et al. 2004). The bispectrum of curvature perturbation for the equilateral model
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3 - non-linear bias
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I. INTRODUCTION

The standard inflationary paradigm predicts a flat Universe perturbed by nearly Gaussian and scale invariant pri-
mordial perturbations. These predictions have been verified to a high degree of accuracy by Cosmic Microwave Back-
ground (CMB) and Large-Scale Structure (LSS) measurements, such as those provided by the Wilkinson Microwave
Anisotropy Probe (WMAP; Komatsu et al., 2009), the 2dF Galaxy Redshift Survey (2dFGRS; Percival et al., 2002)
and the Sloan Digital Sky Survey (SDSS; Tegmark et al., 2004). Despite this success, it has proved to be di⇧cult to
discriminate between the vast array of inflationary scenarios that have been proposed by high-energy theoretical inves-
tigations, or even to rule-out alternatives to inflation.. Since most of the present constraints on the Lagrangian of the
inflaton field have been obtained from measurements of the two-point function, or power spectrum, of the primordial
fluctuations, a natural step is to extend the available information is to look at non-Gaussian signatures in higher order
correlators.

The lowest order additional correlator to take into account is the three-point function or its counterpart in Fourier
space, the bispectrum. Every model of inflation is characterized by specific predictions for the bispectrum of the
primordial perturbations in the gravitational potential ⇥(k). The bispectrum B⇥(k1, k2, k3) of these perturbations is
defined as

◆⇥(k1)⇥(k2)⇥(k3) ⌅ (2⌦)3⌅D(k123) B⇥(k1, k2, k3) , (I.1)

where we have introduced the notation ki j ⌅ k1+k2 so that the Dirac delta function here is ⌅D(k123) ⌅ ⌅D(k1+k2+k3).
Together with the assumption of statistical homogeneity and isotropy for the primordial perturbations, this implies that
the bispectrum is a function of the triplet defined by the magnitude of the wavenumbers k1, k2 and k3 forming a closed
triangular configuration. The current constraints that we are able to derive on the bispectrum B⇥(k1, k2, k3) provide
additional information about the early Universe; the possible detection of a non-vanishing primordial bispectrum
in future observations would represent a major discovery, especially as it is predicted to be negligible by standard
inflation.

The cosmological observable most directly related to the initial curvature bispectrum is given by the bispectrum
of the CMB temperature fluctuations, which provide a map of the density perturbations at the time of decoupling,
the earliest information we have about the Universe. Current measurements of individual triangular configurations of
the CMB bispectrum are, however, consistent with zero. Studies of the primordial bispectrum, therefore, are usually
characterized by constraints on a single amplitude parameter, denoted by fNL, once a specific model for B⇥ is assumed.
Since most models predict a curvature bispectrum obeying the hierarchical scaling B⇥(k, k, k) ⌥ P2

⇥(k), with P⇥(k)
being the curvature power spectrum, the non-Gaussian parameter roughly quantifies the ratio fNL ⌥ B⇥(k, k, k)/P2

⇥(k),
defining the “strength” of the primordial non-Gaussian signal. In addition, we can write

B⇥(k1, k2, k3) ⌅ fNLF(k1, k2, k3) , (I.2)

where F(k1, k2, k3) encodes the functional dependence of the primordial bispectrum on the specific triangle config-
urations. For brevity, the characteristic shape-dependence of a given bispectrum is often referred to simply as the
bispectrum shape (a precise definition of the bispectrum shape function will be given in section II.A). Inflationary pre-
dictions for both the amplitude fNL and the shape of B⇥ that are strongly model-dependent. Notice that the subscript
“NL” stands for “nonlinear”, since a common phenomenological model for the non-Gaussianity of the initial condi-
tions can be written as a simple nonlinear transformation of a Gaussian field. Generically, of course, non-Gaussianity
is associated with nonlinearities, such as nontrivial dynamics during inflation, resonant behaviour at the end of infla-
tion (‘preheating’), or nonlinear post-inflationary evolution. At the very least, future CMB and LSS observations are
expected to be able to eventually detect the small last contribution.

Perturbations in the CMB provide a particularly convenient test of the primordial density field because CMB temper-
ature and polarization anisotropies are small enough to be studied in the linear regime of cosmological perturbations.
Once the e⌅ects of foregrounds are properly taken into account, a non-vanishing CMB bispectrum at large scales
would be a direct consequence of a non-vanishing primordial bispectrum. As we will see, while other CMB probes
of primordial non-Gaussianity are available, such as tests of the topological properties of the temperature map based
on Minkowski Functionals or measurements of the CMB trispectrum, the estimator for the non-Gaussian parameter

amplitude shape

(Model-dependent)
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the higher derivative models (Creminelli 2003) and the DBI
inflationary model(Alishahiha et al. 2004). The bispectrum of
the curvature perturbation for the equilateral model is

B
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Φ = 6 f
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NL ∆2

Φ

[

− 1

k
4−ns

1 k
4−ns

2

− 1

k
4−ns

2 k
4−ns

3

− 1

k
4−ns

3 k
4−ns

1

− 2
(k1 k2 k3)2(4−ns )/3

+

(
1

k
(4−ns )/3
1 k

2(4−ns )/3
2 k

4−ns

3

+ (5 perm.)

) ]

. (42)

Following Scoccimarro et al. (1998), a bispectrum estimator
for a cubic survey volume of V can be defined as

B̂(k1, k2, k3) ≡ Vf

VB(k1, k2, k3)

∫

k1

d3q1

∫

k2

d3q2

×
∫

k3

d3q3 δD(q1 + q2 + q3) δ(q1) δ(q2) δ(q3),

(43)

where Vf ≡ k3
f = (2π )3/V is the elemental volume in k space

of the observation cells, and each integration is over the range
[ki −∆k/2, ki +∆k/2] centered on ki, with ∆k equal to a multiple
of kf . Here, δD(q1 + q2 + q3) is the Dirac delta function which
ensures that the vectors q1, q2, and q3 form a triangle, while
VB(k1, k2, k3) is the normalization factor given by

VB ≡
∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3 δD(q1 + q2 + q3)

$ 8π2 k1 k2 k3 ∆k1 ∆k2 ∆k3. (44)

In the following, we assume ∆ki = kf so as to take into account
all “fundamental” triangular configurations.

To leading order, the variance of this estimator is
(Scoccimarro et al. 1998)

∆B2
s (k1, k2, k3) $ (2π )3 Vf

s123

VB
Ptot(k1) Ptot(k2) Ptot(k3),

(45)
where s123 = 6, 2, 1, respectively, for equilateral, isosceles,
and general triangles, and Ptot(k) is the total measured power
spectrum including the redshift space H i power spectrum,
Ps(k) = aP

0 (β) PH i(k), and the noise power spectrum N (k).
The Fisher matrix for observations of reduced bispectrum at

a given redshift bin can be written as

Fαβ ≡
kmax∑

k1=kmin

k1∑

k2=kmin

k2∑

k3=k%
min

∂Qs

∂α

∂Qs

∂β

1
∆Q2

s

, (46)

where ∆Q2
s is the variance of the reduced H i bispectrum

measured in redshift space, and α and β represent the parameters
we are interested in, i.e., fNL, and bH i

1 (zi) and bH i
2 (zi) for each

redshift bin zi of the survey. The three sums are over all of
the combinations of k1, k2, and k3 that form triangles, in steps
of ∆ki with k%

min = max(kmin, |k1 − k2|). In each redshift bin,
we divide the survey volume into cubes and kmin is still set by
the scale spanning the redshift bin. kmax is set by the Nyquist
frequency or the smallest scale at which we can trust our model
for the H i bispectrum. Here, we assume that the tree-level

Table 3
The Marginalized 1σ Errors of fNL Using the H i

Bispectrum Measured by Tianlai

Pathfinder Pathfinder+ Full Scale
Nfeed per cylinder 32 72 256

σ local
fNL

70814 2272 21.7

σ
equil
fNL

79427 2754 157

bispectrum breaks down below the nonlinear scale cutoff, so that
kmax = Min{kNyq, knonl}. If we assume that the variance of the
H i bispectrum ∆Bs dominates over the variance of the H i power
spectrum ∆Ps , then the variance of the reduced H i bispectrum
in redshift space can be written as (Sefusatti & Komatsu 2007)

∆Q2
s (k1, k2, k3) $ ∆B2

s (k1, k2, k3)

[Ps(k1)Ps(k2) + (2 perm.)]2 (47)

with ∆B2
s given by Equation (45).

We assume the fiducial values of H i bias parameters as given
in Section 2.1, and take the fiducial value of fNL = 0 for both the
local and equilateral models. Assuming one year’s integration
time and a total survey area of 10,000 deg2, the marginalized
1σ errors on f local

NL and f
equil
NL are listed in Table 3. Again, we

find that the pathfinder and pathfinder+ data are insufficient to
provide much constraint to the bispectrum, due to the large error
in its measurement. With the full-scale Tianlai experiment, we
could achieve σ local

fNL
∼ 22 for the local model and σ

equil
fNL

∼ 157
for the equilateral model.

5. CONCLUSIONS

In this work, we assess the ability of the Tianlai experiments
to constrain various cosmological parameters, specifically the
dark energy equation of state and the level of primordial non-
Gaussianity. We use the Fisher information matrix method,
which is widely used for making such predictions. We have
compared our results with other predictions of 21 cm intensity
mapping experiments (Chang et al. 2008; Ansari et al. 2008;
Seo et al. 2010; Ansari et al. 2012; Alonso et al. 2014), and
found that they generally yield similar results when the same
conditions are assumed.

Currently, our plan is to first test the principle and key
technologies with a smaller-scale pathfinder experiment and
then upgrade to the pathfinder+ experiment, before eventually
building the full-scale Tianlai experiment. The goal of the
pathfinders is to test the technologies and feasibility of H i
intensity mapping observations with cylinder arrays, and as
shown in this work, we expect to be able to measure the H i
power spectrum with the pathfinders, but the constraints that
could be obtained on cosmological parameters would be fairly
weak.

The full-scale Tianlai experiment will significantly tighten
the constraints by adding the number of receivers, thereby
increasing the effective collecting area of the cylinders, and
by expanding the scale of the cylinders, thereby increasing the
spatial resolution. Assuming an integration time of one year
and a survey area of 10,000 deg2, we expect σw0 ∼ 0.082
and σwa

∼ 0.21 from the BAO and RSD measurements. This
is comparable to the expected precision from stage IV dark
energy experiments as defined by the DETF report (Albrecht
et al. 2006), while the cost would only be a small fraction of
such experiments.
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broader redshift coverage and larger survey volume) will provide us with more stringent constraints
on PNG than those achievable by other experiments such as the Tianlai project.

For SKA1-MID, IM may be conducted with the dishes used individually in auto-correlation
mode, being calibrated using interferometry. In this case, kmax is limited by the Nyquist frequency,
as well as the smallest scale above which we could trust the tree-level matter bispectrum. We
adopt a non-linear scale cutoff, knl, for the tree-level matter bispectrum, by requiring the variance
in the density contrast field at π/(2knl) to equal 0.5 in each redshift bin. With Nd = 254 15 m
diameter dishes, a survey area of 20,000 deg2, and a total integration time of 5,000 hr, we find
σ( f locNL) = 45.7 and σ( f

eq
NL) = 214.3 when we marginalise over the HI bias factors bHI,1 and bHI,2

at each redshift bin, while σ( f locNL) = 15.3 and σ( f
eq
NL) = 61.8 if we assume a constant bias factors.

Otherwise, by using interferometry with the full SKA, kmax is set by the non-linear scale knl, and
we find much accurate marginalised errors σ( f locNL) = 6.6 and σ( f

eq
NL) = 55.4, or σ( f

loc
NL) = 2.2 and

σ( f eqNL) = 10.9.

3.2 Intensity Mapping from the Epoch of Reionisation

The PNG affects the clustering of the early star-forming galactic haloes responsible for cre-
ating a network of ionised patches in the surrounding intergalactic medium during the EoR. This
leaves a PNG imprint on the HI tomographic mapping in the intergalactic medium using its red-
shifted 21 cm radiation. On large scales, where the typical size of ionised regions is much smaller
than the scale of interest, we can neglect the non-linear effects of reionisation patchiness on the 21
cm power spectrum. Then the 21 cm temperature power spectrum during the EoR can be written
as

P∆T (k,z) = δ̃T
2
bx̄
2
HI
[
bHI(k,z)+µ2k

]2Pδ (k,z), (3.3)

where δ̃Tb(z) = 23.88(Ωbh2/0.02)
√
0.15/(Ωmh2)(1+ z)/10 mK, x̄HI(z) is the global neutral hy-

drogen fraction, and µk ≡ k · n̂/k, i.e. the cosine of angle between the line-of-sight n̂ and wave
vector k of a given Fourier mode.

The ionised density bias bHII is the fundamental quantity derived from reionisation models,
related to the neutral density bias bHI by bHI = (1− x̄HII bHII)/x̄HI. The reionisation in the presence
of PNG can be modelled using two independent methods as follows (D’Aloisio et al. 2013):

1. Excursion-set model of reionisation (ESMR) – We can use a parameter ζESMR to characterize
the efficiency of the local collapsed fraction of mass in luminous sources above some mass
threshold in releasing ionising photons into the intergalactic medium (Furlanetto et al. 2004).
The full functions x̄HI(z) and bHII(k,z) are set by two parameters, f locNL and ζESMR.

2. Phenomenological model – Similar to the scale-dependent halo bias, D’Aloisio et al. (2013)
derived a scale-dependent non-Gaussian correction to the ionised density bias, ∆bHII(k,z),
analogous to Eq. (2.2). It depends upon the scale-independent Gaussian ionised density bias
bHII(z). Therefore, we can marginalise fNL over two phenomenological parameters, x̄HI(zi)
and bHII(zi), in each redshift bin zi.

Both methods can be used to constrain PNG with the 21 cm power spectrum from the EoR. Mao
et al. (2013) demonstrated that for a single frequency bin measurement, their constraints on f locNL
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of PNG can be modelled using two independent methods as follows (D’Aloisio et al. 2013):
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the efficiency of the local collapsed fraction of mass in luminous sources above some mass
threshold in releasing ionising photons into the intergalactic medium (Furlanetto et al. 2004).
The full functions x̄HI(z) and bHII(k,z) are set by two parameters, f locNL and ζESMR.

2. Phenomenological model – Similar to the scale-dependent halo bias, D’Aloisio et al. (2013)
derived a scale-dependent non-Gaussian correction to the ionised density bias, ∆bHII(k,z),
analogous to Eq. (2.2). It depends upon the scale-independent Gaussian ionised density bias
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Fig. 6. �P

P
induced by the particle production for the potential (83), with representative

parameters � := µ/�̇0 = H
�1

,� = 0.9,M = 10
�3

Mpl, ✏ = 0.01 with � = �⇤ approxi-

mately 4 and 3 e-folds (left and right, respectively) before the current horizon scale exited

the Hubble radius during inflation.

that in our derivation, the  quanta do not need to become exactly masslessxl at �⇤,
as has typically been considered in the literature, only that the scale µ be such that
the adiabatic condition (82) be violated, which can happen for reasonable values
consistent with slow roll and the existence of the appropriate hierarchies between the
mass of the heavy quanta and H. Of course, particle production is parametrically
enhanced when the  quanta become exactly massless, as considered in [143–148],
whose results can be viewed as a particular case of the treatment elaborated upon
here.

An interesting generalization has also been considered in [149–152]xli, where mo-
tivated by string theoretic considerations, the e↵ects of traversing multiple intervals
in field space where massless fields appear along (or nearby) the inflaton trajectory
was considered. In the limiting case where these regions appear frequently (while
satisfying (79) throughout), a limiting velocity results for the inflaton due to contin-
ual particle production as inflation progresses. The resulting e↵ective potential for
the inflaton is consequently ‘flattened’ even in cases where the tree level potential
would not ordinarily sustain slow roll. This is but one example of potentially observ-
able physical consequences the inflaton’s embedding in its (multiple field) parent
theory. In the next subsection we review other such examples that can result in the
appearance of new characteristic scales in cosmological observables.

xlWhich would correspond to the case � = 1 – see the figure in Appendix B.3 for observationally
relevant particle production for smaller values of �.
xliSee also [153] for a related study in a fully multi-field context.

• Particle production (before 
the current horizon scale exited 
the Hubble radius during 
inflation)

Chluba, Hamann & Patil (2015)
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Fig. 4. fNL/�max (Black lines) vs
�P

P
/�max (Blue lines) for the equilateral (right),

folded (middle) and squeezed shapes (left) for ⌧0k⇤ = �11, c = 0.8 (top) and ⌧0k⇤ = �11,

c = 1.5 (bottom) respectively for the ‘cosh’ drop in the speed of sound, given by c
2
s =

1� �max
cosh[c(⌧�⌧0)]

.

where primes denote logarithmic derivatives with respect to the comoving scale k.
All model dependence and dependence of the particular shape configuration (but
not its scale) are encoded in the c

4

i
(~k) coe�cients [124]. In particular, we note that

the single field consistency relation [39, 83] implies that c
4

1
(~k) ! 0 for the squeezed

configuration, which is easily be verified to be the case in (76). In figure 4 we
illustrate the correlation between features in the power spectrum and the correlated
features in the bispectrum for three shape configurations, induced by a transient
drop in the adiabatic speed of sound. Although the fNL diagnostic defined in (77)
is not optimized for oscillating features, we simply use it as a useful heuristic for
the time being, postponing a discussion of more appropriate estimators for features
in the bispectrum to Sect. 4. One can readily generalize this analysis to higher
order and the case where the slow roll parameters are taken to vary in addition
[125–127]xxxiv. Clearly, seeing any such correlation between features in the power
spectrum and the bispectrum would o↵er compelling evidence of the nature of the
inflaton as an e↵ectively single, weakly coupled degree of freedom independent of the
details of its UV completionxxxv. It should also be stressed that a positive detection
of any such features would also permit a primitive spectroscopy of the parent theory
in that the overall envelope of the features that can be read o↵ from Fig. 4 relate
directly to the scales M and  given in Eq. (70) and (71).

xxxivSee [116] for a study of the analagous situation where the turns are so fast such that (74) is
no longer satisfied and adiabaticity is violated.
xxxvSee ref.[128] for preliminary indications for such a correlation in first year Planck data.



Figure 1. Non-scale invariant part of the power spectrum (3.21) for a hyperbolic tangent step (A.6),
evaluated for ✏step = 0.001 and � = 43⇡ for illustration purposes.

a Dirac delta function. Then the integration in the previous equation would give a power-
spectrum which exhibits constant amplitude oscillations with frequency 2k⌧f up to k ! +1.
As we will see better in the next sections, the limit � ! +1 cannot be taken naively since
it is not phyisical, and we must take into account the finite width of the step. The integral
in eq. (3.21) can be analitically evaluated when � � 1 (see appendix A and refs. [19, 50]),
leading to

lnP⇣ = lnP⇣,0 �
2

3
✏stepW

0(k⌧f )D

✓
k⌧f

�

◆
, (3.23)

where D(y) is a damping function normalized to one. As shown in appendix A, D corresponds
to the Fourier transform of the step function F times (�ik), irrespective of the particular
shape of the step. We want to stress that this is a general property for models with very sharp
steps, without any further assumptions on the form of the function F . Some further comments
about eq. (3.23) are in order. The function W

0(x) in (3.22) oscillates between �1 and +1
up to k ! +1 while the function D acts as a damping envelope. As x ! 0, W 0(x) ! 0
and no spurious super-horizon contributions during inflation are generated. Moreover, the
damping, decaying exponentially, “localizes” the oscillations in an e↵ectively finite range in
k-space. This was desirable and confirms our intuition that the feature should not a↵ect
modes either much before or much after the step. This is clearly visible from figure 1: the
largest contribution is in the range of frequencies 1 . k⌧f . �, which refers to the modes
which are inside horizon at the time of the feature but whose momenta are not greater than
the inverse of the time, b = 1/�H, characterizing the sharpness of the step. It is also clear
that, as the parameter � becomes larger, the range in k-space in which there are oscillations
also becomes larger. In the limit of an infinitely sharp step, � ! +1, as we already said,
the power-spectrum would gain oscillations with constant amplitude up to k ! +1. Notice
finally that the total height of the step, namely 2✏step, does not a↵ect neither the frequency
of the oscillations nor the damping and appear in eq. (3.23) only as a multiplicative constant
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u Realized in the axion monodromy

inflation

The Resonant Model

fres = 10, Cw = 10

u A sudden step in the inflaton
potential 

The Step Model

Height --
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Position/time --

scenario [22], where the inflaton field is modulated by a
sinusoidal oscillation of frequency ω. The power spectrum
is given by [23]

Pres
Φ ðkÞ ¼ PΦðkÞ

!
1þ 8fres

C2
ω

cos
"
Cω ln

k
kp

#$
; ð1Þ

where fres describes the amplitude of the resonant non-
Gaussianity, kp is the pivot scale which we fix to kp ¼
0.02 Mpc−1, and Cω ≡ ω=HI is the resonance “frequency,”
where HI is the Hubble parameter during inflation. For
axion monodromy inflation, the observed amplitude of the
power spectrum imposes a limit of fres ≲ 10−3C5=2

ω [24,25].
The corresponding bispectrum reads [11,23]

Bres
Φ ð~k1; ~k2; ~k3Þ ¼

80π4

3

fresΔ2
Φ

k21k
2
2k

2
3

×
!
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"
Cω ln

K
kp

#

þ 1

Cω
cos

"
Cω ln

K
kp

#X

i≠j

ki
kj

þO
"

1

C2
ω

#$
;

ð2Þ

where ki ¼ j~kij, K ¼ k1 þ k2 þ k3, and ΔΦ is the ampli-
tude of primordial scalar power spectrum evaluated at kp.
Local features that affect only a relatively narrow k range

in the power spectrum and bispectrum can be generated,
e.g., in models with brief rapid changes in the effective
sound speed [26–28] or in models with a sudden step in the
inflaton potential (step model) [2,21,29] and some other
cases [30–33]. In the latter case, the power spectrum can be
approximated analytically by [4,34]

lnPstep
Φ ðkÞ ¼ lnPΦðkÞ −

2

3
ϵstepW0ðkτfÞD

"
kτf
β

#
; ð3Þ

where W0ðxÞ≡ ð−3þ 9
x2Þ cosð2xÞ þ ð15 − 9

x2Þ
sinð2xÞ
2x , and

the damping function DðyÞ ¼ πy= sinhðπyÞ for a hyper-
bolic tangent step in the inflaton potential. The correspond-
ing bispectrum is [4,35]

Bstep
Φ ðk1; k2; k3Þ

¼ 5

12
ϵstepD

"
kτf
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− Kτf

#
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−
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−
P

i≠jk
2
i kj
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sinðKτfÞ
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: ð4Þ

Here, ϵstep ≪ 1 is the height of the step in the potential,
β ≫ 1 is the sharpness of the step, and τf is the conformal
time at which the step occurs. Larger values of β imply a
sharper step and thus a more extended shape of the feature
envelope, making the signal easier to detect.

In either case, such features could be searched by
measuring the power spectrum or bispectrum over a range
of k. On large scales, the HI intensity traces the total matter
density. As is usually done in such a forecast, here we
assume that the foreground can be removed, so that the
measurement error on the 21 cm signal is determined simply
by the system temperature, integration time, and the array
configuration of the radio telescope. In redshift space, the
power spectrum is smeared by the peculiar velocity, which
wemodel asPsðk; zÞ ¼ ½bHI1 ðzÞ þ fðzÞμ2&2e−k2μ2σ2rPmðk; zÞ,
where bHI1 is the bias factor of HI, fðzÞ is the linear growth
rate, μ≡ k∥=k is the cosine of the angle with respect to the
line of sight, and Pmðk; zÞ is the matter power spectrum at
redshift z. The nonlinear dispersion scale, characterizing
the “finger of God” effect on small scales, is taken as
σr ¼ 7 Mpc [15,36].

III. FORECASTS

We use the Fisher information matrix to forecast the
expected measurement uncertainties. We take the 21 cm
power spectrum and bispectrum as our observables and
forecast the error in the measurement of amplitude param-
eters for the feature models, such as fres and ϵstep, while
keeping other parameters of the feature model, e.g., Cω; β
or τf fixed in the forecast. The likelihood is Gaussian,

L ¼ ½ð2πÞn detC&−1=2 exp
"
−
1

2
ΔC−1Δ

#
; ð5Þ

whereΔ is the difference between the data and prediction, n
is the number of data, and C is the covariance matrix. Note
that if we take fres ¼ 0 or ϵstep ¼ 0 as the null hypothesis,
the likelihood ratio used by a testing of the hypothesis
of the presence of features in the data is given exactly by
the same expression, so the parameter forecast is equivalent
to hypothesis testing. We shall also take the remaining
cosmological parameters as fixed since they are uncorre-
lated with the feature parameters and adopt the Planck-
2015 model [37] as our fiducial cosmology model. The
Fisher matrix of the set of parameters of interest is then
given by Fαβ ¼ 1

2 Tr½C;αC−1C;βC−1&.
In the forecast with power spectrum data, we found only

a negligible difference when considering nonlinear correc-
tions. For the bispectrum, the nonlinear corrections are
already comparable to the amplitude of the primordial
feqNL ∼ 1 term on relatively large scales [38]. However, only
the mode-coupling part of the nonlinear corrections should
be expected to have an impact on our ability to detect
features; the non-mode-coupling corrections merely gen-
erate broad distortions but not oscillating features. The non-
mode-coupling contribution is important if one is looking
for physical effects that also predict a broad distortion, such
as a nonzero neutrino mass, but is much less relevant when
it comes to looking for oscillatory features as we do in this
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scenario [22], where the inflaton field is modulated by a
sinusoidal oscillation of frequency ω. The power spectrum
is given by [23]

Pres
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where fres describes the amplitude of the resonant non-
Gaussianity, kp is the pivot scale which we fix to kp ¼
0.02 Mpc−1, and Cω ≡ ω=HI is the resonance “frequency,”
where HI is the Hubble parameter during inflation. For
axion monodromy inflation, the observed amplitude of the
power spectrum imposes a limit of fres ≲ 10−3C5=2

ω [24,25].
The corresponding bispectrum reads [11,23]
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where ki ¼ j~kij, K ¼ k1 þ k2 þ k3, and ΔΦ is the ampli-
tude of primordial scalar power spectrum evaluated at kp.
Local features that affect only a relatively narrow k range

in the power spectrum and bispectrum can be generated,
e.g., in models with brief rapid changes in the effective
sound speed [26–28] or in models with a sudden step in the
inflaton potential (step model) [2,21,29] and some other
cases [30–33]. In the latter case, the power spectrum can be
approximated analytically by [4,34]

lnPstep
Φ ðkÞ ¼ lnPΦðkÞ −
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where W0ðxÞ≡ ð−3þ 9
x2Þ cosð2xÞ þ ð15 − 9

x2Þ
sinð2xÞ
2x , and

the damping function DðyÞ ¼ πy= sinhðπyÞ for a hyper-
bolic tangent step in the inflaton potential. The correspond-
ing bispectrum is [4,35]
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Here, ϵstep ≪ 1 is the height of the step in the potential,
β ≫ 1 is the sharpness of the step, and τf is the conformal
time at which the step occurs. Larger values of β imply a
sharper step and thus a more extended shape of the feature
envelope, making the signal easier to detect.

In either case, such features could be searched by
measuring the power spectrum or bispectrum over a range
of k. On large scales, the HI intensity traces the total matter
density. As is usually done in such a forecast, here we
assume that the foreground can be removed, so that the
measurement error on the 21 cm signal is determined simply
by the system temperature, integration time, and the array
configuration of the radio telescope. In redshift space, the
power spectrum is smeared by the peculiar velocity, which
wemodel asPsðk; zÞ ¼ ½bHI1 ðzÞ þ fðzÞμ2&2e−k2μ2σ2rPmðk; zÞ,
where bHI1 is the bias factor of HI, fðzÞ is the linear growth
rate, μ≡ k∥=k is the cosine of the angle with respect to the
line of sight, and Pmðk; zÞ is the matter power spectrum at
redshift z. The nonlinear dispersion scale, characterizing
the “finger of God” effect on small scales, is taken as
σr ¼ 7 Mpc [15,36].

III. FORECASTS

We use the Fisher information matrix to forecast the
expected measurement uncertainties. We take the 21 cm
power spectrum and bispectrum as our observables and
forecast the error in the measurement of amplitude param-
eters for the feature models, such as fres and ϵstep, while
keeping other parameters of the feature model, e.g., Cω; β
or τf fixed in the forecast. The likelihood is Gaussian,

L ¼ ½ð2πÞn detC&−1=2 exp
"
−
1

2
ΔC−1Δ

#
; ð5Þ

whereΔ is the difference between the data and prediction, n
is the number of data, and C is the covariance matrix. Note
that if we take fres ¼ 0 or ϵstep ¼ 0 as the null hypothesis,
the likelihood ratio used by a testing of the hypothesis
of the presence of features in the data is given exactly by
the same expression, so the parameter forecast is equivalent
to hypothesis testing. We shall also take the remaining
cosmological parameters as fixed since they are uncorre-
lated with the feature parameters and adopt the Planck-
2015 model [37] as our fiducial cosmology model. The
Fisher matrix of the set of parameters of interest is then
given by Fαβ ¼ 1

2 Tr½C;αC−1C;βC−1&.
In the forecast with power spectrum data, we found only

a negligible difference when considering nonlinear correc-
tions. For the bispectrum, the nonlinear corrections are
already comparable to the amplitude of the primordial
feqNL ∼ 1 term on relatively large scales [38]. However, only
the mode-coupling part of the nonlinear corrections should
be expected to have an impact on our ability to detect
features; the non-mode-coupling corrections merely gen-
erate broad distortions but not oscillating features. The non-
mode-coupling contribution is important if one is looking
for physical effects that also predict a broad distortion, such
as a nonzero neutrino mass, but is much less relevant when
it comes to looking for oscillatory features as we do in this
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scenario [22], where the inflaton field is modulated by a
sinusoidal oscillation of frequency ω. The power spectrum
is given by [23]
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where fres describes the amplitude of the resonant non-
Gaussianity, kp is the pivot scale which we fix to kp ¼
0.02 Mpc−1, and Cω ≡ ω=HI is the resonance “frequency,”
where HI is the Hubble parameter during inflation. For
axion monodromy inflation, the observed amplitude of the
power spectrum imposes a limit of fres ≲ 10−3C5=2

ω [24,25].
The corresponding bispectrum reads [11,23]
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where ki ¼ j~kij, K ¼ k1 þ k2 þ k3, and ΔΦ is the ampli-
tude of primordial scalar power spectrum evaluated at kp.
Local features that affect only a relatively narrow k range

in the power spectrum and bispectrum can be generated,
e.g., in models with brief rapid changes in the effective
sound speed [26–28] or in models with a sudden step in the
inflaton potential (step model) [2,21,29] and some other
cases [30–33]. In the latter case, the power spectrum can be
approximated analytically by [4,34]

lnPstep
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where W0ðxÞ≡ ð−3þ 9
x2Þ cosð2xÞ þ ð15 − 9

x2Þ
sinð2xÞ
2x , and

the damping function DðyÞ ¼ πy= sinhðπyÞ for a hyper-
bolic tangent step in the inflaton potential. The correspond-
ing bispectrum is [4,35]
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Here, ϵstep ≪ 1 is the height of the step in the potential,
β ≫ 1 is the sharpness of the step, and τf is the conformal
time at which the step occurs. Larger values of β imply a
sharper step and thus a more extended shape of the feature
envelope, making the signal easier to detect.

In either case, such features could be searched by
measuring the power spectrum or bispectrum over a range
of k. On large scales, the HI intensity traces the total matter
density. As is usually done in such a forecast, here we
assume that the foreground can be removed, so that the
measurement error on the 21 cm signal is determined simply
by the system temperature, integration time, and the array
configuration of the radio telescope. In redshift space, the
power spectrum is smeared by the peculiar velocity, which
wemodel asPsðk; zÞ ¼ ½bHI1 ðzÞ þ fðzÞμ2&2e−k2μ2σ2rPmðk; zÞ,
where bHI1 is the bias factor of HI, fðzÞ is the linear growth
rate, μ≡ k∥=k is the cosine of the angle with respect to the
line of sight, and Pmðk; zÞ is the matter power spectrum at
redshift z. The nonlinear dispersion scale, characterizing
the “finger of God” effect on small scales, is taken as
σr ¼ 7 Mpc [15,36].

III. FORECASTS

We use the Fisher information matrix to forecast the
expected measurement uncertainties. We take the 21 cm
power spectrum and bispectrum as our observables and
forecast the error in the measurement of amplitude param-
eters for the feature models, such as fres and ϵstep, while
keeping other parameters of the feature model, e.g., Cω; β
or τf fixed in the forecast. The likelihood is Gaussian,

L ¼ ½ð2πÞn detC&−1=2 exp
"
−
1

2
ΔC−1Δ

#
; ð5Þ

whereΔ is the difference between the data and prediction, n
is the number of data, and C is the covariance matrix. Note
that if we take fres ¼ 0 or ϵstep ¼ 0 as the null hypothesis,
the likelihood ratio used by a testing of the hypothesis
of the presence of features in the data is given exactly by
the same expression, so the parameter forecast is equivalent
to hypothesis testing. We shall also take the remaining
cosmological parameters as fixed since they are uncorre-
lated with the feature parameters and adopt the Planck-
2015 model [37] as our fiducial cosmology model. The
Fisher matrix of the set of parameters of interest is then
given by Fαβ ¼ 1

2 Tr½C;αC−1C;βC−1&.
In the forecast with power spectrum data, we found only

a negligible difference when considering nonlinear correc-
tions. For the bispectrum, the nonlinear corrections are
already comparable to the amplitude of the primordial
feqNL ∼ 1 term on relatively large scales [38]. However, only
the mode-coupling part of the nonlinear corrections should
be expected to have an impact on our ability to detect
features; the non-mode-coupling corrections merely gen-
erate broad distortions but not oscillating features. The non-
mode-coupling contribution is important if one is looking
for physical effects that also predict a broad distortion, such
as a nonzero neutrino mass, but is much less relevant when
it comes to looking for oscillatory features as we do in this
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u No evidence for such 

features in the power 

spectrum or bispectrum

with a statistical 

significance higher than 

3σ (Planck 2015 results)
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Model Planck TT+lowP Planck TT,TE,EE+lowP PTE
��2

e↵ ln B ��2
e↵ ln B

Step �8.6 �0.3 �7.3 �0.6 0.09
Log osc. �10.6 �1.9 �10.1 �1.5 0.24

Linear osc. �8.9 �1.9 �10.9 �1.3 0.50
Cutoff �2.0 �0.4 �2.2 �0.6 0.12

Table 12. Improvement in fit and Bayes factors with respect
to power-law base ⇤CDM for Planck TT+lowP and Planck
TT,TE,EE+lowP data, as well as approximate probability to ex-
ceed the observed ��2

e↵ (p-value), constructed from simulated
Planck TT+lowP data. Negative Bayes factors indicate a prefer-
ence for the power-law model.
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Fig. 33. Distribution of ��2
e↵ from 400 simulated Planck

TT+lowP data sets.

9.2. Analysis and results

We use MultiNest to evaluate the Bayesian evidence for the
models and establish parameter constraints, and to roughly iden-
tify the global maximum likelihood region of parameter space.
The features model best-fit parameters and lnL are then ob-
tained with the help of the CosmoMC minimization algorithm,
taking narrow priors around the MultiNest best fit. For the
parameters of the features models, we assign flat prior probabili-
ties. The prior ranges are listed in Table 11. Note that throughout
this section, for the sake of maximizing sensitivity to very sharp
features, the unbinned (“bin1”) versions of the high-` TT and
TT,TE,EE likelihoods are used instead of the standard, binned
versions.

Since the features considered here can lead to broad distor-
tions of the CMB angular power spectrum degenerate with the
late-time cosmological parameters (Miranda & Hu, 2014), in all
cases we simultaneously vary primordial parameters and all the
⇤CDM parameters, but we keep the foreground parameters fixed
to their best-fit values for the power-law base ⇤CDM model.

We present the Bayes factors with respect to the power-law
base ⇤CDM model and the improvement in �2

e↵ over the power-
law model in Table 12. For our choice of priors, none of the
features models are preferred over a power-law spectrum. The
best-fit power spectra are plotted in Fig. 34. While the cutoff and
step model best fits reproduce the large-scale suppression at ` ⇡
20–30 also obtained by direct power spectrum reconstruction in
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Fig. 34. Best-fit power spectra for the power-law (black curve),
step (green), logarithmic oscillation (blue), linear oscillation (or-
ange), and cutoff (red) models using Planck TT+lowP data. The
brown curve is the best fit for a model with a step in the warp
and potential (Eqs. (71)–(78)).

Sect. 8, the oscillation models prefer relatively high frequencies
that are beyond the resolution of the reconstruction methods.

In addition to the four features models we also show in
Fig. 34 the best fit of a model allowing for steps in both in-
flaton potential and warp (brown line); note particularly the
strong resemblance to the reconstructed features of the previ-
ous section. The effective ��2 for this model is �12.1 (�11.5)
for Planck TT+lowP (Planck TT,TE,EE+lowP) data, at the cost
of adding five new parameters, resulting in a ln-Bayes factor of
�0.8 (�0.4). A similar phenomenology can be also be found for
the case of a sudden change in the slope of the inflaton potential
(Starobinsky, 1992; Choe et al., 2004), which yields a best-fit
��2 = �4.5(�4.9) for two extra parameters.

As shown in Table 13, constraints on the remaining cosmo-
logical parameters are not significantly affected when allowing
for the presence of features.

For the cutoff and step models, the inclusion of Planck
small-scale polarization data does not add much in terms of di-
rect sensitivity; the best fits lie in the same parameter region
as for Planck TT+lowP data and the ��2

e↵ and Bayes factors
are not subject to major changes. The two oscillation models’
Planck TT+lowP best fits, on the other hand, also predict a
non-negligible signature in the polarization spectra at high `.
Therefore, if the features were real, one would expect an ad-
ditional improvement in ��2 for Planck TT,TE,EE+lowP. This
is not the case here. Though the linear oscillation model’s max-
imum ��2 does increase, the local ��2 in the Planck TT+lowP
best-fit regions is in fact reduced for both models, and the global
likelihood maxima occur at different frequencies (log10 !log =
1.25 and log10 !lin = 1.02) compared to their Planck TT+lowP
counterparts.

In addition to the Bayesian evidence analysis, we also ap-
proach the matter of the statistical relevance of the features
models from a frequentist statistics perspective, in order to give
the ��2

e↵ numbers a quantitative interpretation. Assuming that
the underlying PR(k) was actually a featureless power law, we
can ask how large an improvement to lnL the different fea-
tures models would yield on average, just by overfitting scat-
ter from cosmic variance and noise. For this purpose, we sim-
ulate Planck power spectrum data sets consisting of tempera-

The 3-D information matters!



Constraint on resonant model with 21 cm IM

* Both Tianlai and SKA1-MID can make excellent measurement 

on the relevant redshift range and scales. 

Ø The HI power spectrum observations have 
better sensitivity than the bispectrum.

Ø Bispectrum: σfres ≲18 for Tianlai and σfres ≲
16 for the SKA1-MID

Ø Power spectrum (for Cω ≲ 100): σfres ≲ 2.5 
for Tianlai and σfres ≲ 2.8 for the SKA1-MID. 

Upper limit from CMB PS
(Flauger et al. 2010) 

12

FIG. 8: Fisher forecast for the precision on the amplitude fNL on the shape in eq. (5), assuming an optimal CMB experiment
with `max = 2000. We see that approximately �! / !.

D. Precision forecast an parameter degeneracies

To obtain the normalization of the KSW estimator, and equivalently to determine the precision with which oscillation
parameters can be obtained, one has to evaluate the Fisher matrix. For simplicity we work in the approximation of a
`-diagonal m-independent covariance matrix C` = C

CMB
` +N`, where N` is the diagonal noise power spectrum of the

experiment. Neglecting the o↵-diagonal covariance matrix elements gives almost optimal fNL estimates, even in the
conditions of the Planck experiment. The Fisher matrix element between two logarithmic oscillation bispectra B,B
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of di↵erent frequency or phase is then
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where we schematically wrote the mode bispectra with indices n,m, including both the sine and cosine contribution.
The diagonal elements (B,B) gives the normalization of the estimator for a particular logarithmic bispectrum B. The
corresponding amplitude estimator f̂B has a variance of �f = 1p

FBB
. When evaluating the Fisher matrix for a large

number of frequencies and phases, one would like to calculate the Fisher matrix of the mode bispectra Fmode
nm so that

one can quickly evaluate the Fisher matrix for any mode sum by

FBB0 = anF
mode
nm am. (43)

The mode Fisher matrix for our 600 sine and cosine modes has 0.5 ⇥ 1200 ⇥ 1200 = 720.000 elements. First pre-
calculating all mode bispectra takes about 500 hours on 12 cores, and 1 tera byte of hard disc storage space. Calculating
a single Fisher matrix entry between two mode bispectra takes of order of a minute. That would result in about 12000
CPU hours to calculate the mode Fisher matrix. One could reduce this by interpolation and approximations.

For this paper we chose a computationally less challenging approach. We first sum the modes to calculate each
100 logarithmic bispectra from ! = 1 to ! = 100 for sine and cosine phase. Then we calculate the Fisher matrix
directly for these logarithmic bispectra, resulting in only 20.000 Fisher matrix elements. The normalization we chose
is according to eq. (5), where �2

� = 9.04⇥ 10�16. We assume full sky coverage, no noise, and `max = 2000. For these
parameters, the sensitivity on the amplitude fNL at a given frequency ! is shown in Fig. 8, assuming for simplicity
� = 0. One can compare this to �f flat

NL
' 230 for the same ideal experiment, using the same normalization (i.e. setting

! = 0, � = ⇡/2 in the oscillating shape). Although there is some resonance between the transfer functions and the
primordial bispectrum shape, the signal to noise is always smaller than the flat shape.

To assess how precise the frequency ! is resolved in the CMB, we plot the correlation matrix between the amplitudes
(fi, fj) of frequencies (!i,!j), given by corr(fi, fj) = Fijp

FiiFjj
. In Fig. 9 (left) this is shown for sine to sine and in

Fig. 9 (right) for sine to cosine. The plots show that the frequency resolution is about �! = 1, independent of the
frequency. Further, there is a strong degeneracy between frequency and phase, as seen in the sine to cosine plot. This
suggests that it is su�cient to scan for example for the sine component of the oscillation in a data set.

Predicted CMB BIS 
constraints (Münchmeyer et 
al. 2015)

Xu et al. 2016



Constraint on step model with 21 cm IM
We find that σfres increases with Cω, indicating that the

test will be more sensitive to “low frequency" modulations.
The dependence on Cω can be understood by looking at the
actual amplitude of the modulations in the power and
bispectrum: for the power spectrum, it is proportional to
fres=C2

ω, so one expects σfres ∝ C2
ω. The bispectrum

[Eq. (2)] is dominated by the cosine term at low frequencies

(Cω ≪ 10). Its amplitude scales with C−1
ω , yielding

σfres ∝ Cω, up to the point where the sine term of
Eq. (2), which is independent of Cω, takes over, and the
sensitivity approaches a constant value. Within the range of
Cω considered by us, the HI power spectrum observations
always have better sensitivity to the amplitude of resonant
non-Gaussianity than the bispectrum observations. At very
high frequencies (Cω ≫ 100), the more favorable scaling
of the bispectrum’s sensitivity may invert the situation,
though there the k-space resolution limit applies. The
bispectrum measurements could achieve σfres ≲ 18 for
Tianlai and σfres ≲ 16 for the SKA1-MID, and the power
spectrum measurements could achieve (for Cω ≲ 100)
σfres ≲ 2.5 for Tianlai and σfres ≲ 2.8 for the SKA1-MID.
Münchmeyer et al. [43] predicted the 1-σ error on fres

from CMB bispectrum measurement to be ∼300–3000 for
Cω ≲ 100 (cf. Fig. 8 in Ref. [43]). We note that, even with
the bispectrum measurement from 21 cm intensity map-
ping, the constraints on fres in the resonant model can be
more than 2 orders of magnitude better than those of the
CMB, and even stronger constraints can be obtained from
the HI power spectrum data, particularly for small Cω.
The constraint on the height of the step in the inflaton

potential is plotted in Fig. 2. The left panel shows σϵstep as a
function of sharpness β, for a given step position
τf ¼ 1440 Mpc. For β ≳ 10, the HI bispectrum measure-
ments could achieve σϵstep ≲ 14 for Tianlai and σϵstep ≲ 5.0
for SKA1-MID; while the HI power spectrum measure-
ments could achieve σϵstep ≲ 0.054 for Tianlai and
σϵstep ≲ 0.026 for SKA1-MID. Since sharper features are
accompanied by a more extended envelope, the sensitivity
increases with larger β. However, we note that the theory is

FIG. 1. The marginalized 1 − σ error on fres as a function of Cω
in the resonant model for HI power spectrum measurements
(thin lines) and for HI bispectrum measurements (thick lines),
with the fiducial value of fres set to zero. In each set of lines, the
solid and dashed lines are for Tianlai and SKA1-MID, respec-
tively. The thin long-dashed line shows the HI power spectrum
measurement with Tianlai when the window function effect is
taken into account.

FIG. 2. The marginalized 1 − σ error on ϵstep in the step model for the HI power spectrum measurement (thin lines) and for HI
bispectrum measurements (thick lines). In each set of lines, the solid and dashed lines are for Tianlai and SKA1-MID, respectively. Left
panel: The predicted σϵstep as a function of β for τf ¼ 1440 Mpc. Right panel: The predicted σϵstep as a function of τf for β ¼ 20. The thin
long-dashed line shows the HI power spectrum measurement with Tianlai when the window function effect is taken into account. The
fiducial value of ϵstep is set to zero.
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­ For β ≳ 10, the HI bispectrum measurements could achieve σεstep ≲ 14 for Tianlai and σεstep ≲ 5.0 for SKA1-MID; 
­ The HI power spectrum measurements could achieve σεstep ≲0.054 for Tianlai and σεstep ≲ 0.026 for SKA1-MID. 

­ The sensitivity increases with larger β. 

We find that σfres increases with Cω, indicating that the
test will be more sensitive to “low frequency" modulations.
The dependence on Cω can be understood by looking at the
actual amplitude of the modulations in the power and
bispectrum: for the power spectrum, it is proportional to
fres=C2

ω, so one expects σfres ∝ C2
ω. The bispectrum

[Eq. (2)] is dominated by the cosine term at low frequencies

(Cω ≪ 10). Its amplitude scales with C−1
ω , yielding

σfres ∝ Cω, up to the point where the sine term of
Eq. (2), which is independent of Cω, takes over, and the
sensitivity approaches a constant value. Within the range of
Cω considered by us, the HI power spectrum observations
always have better sensitivity to the amplitude of resonant
non-Gaussianity than the bispectrum observations. At very
high frequencies (Cω ≫ 100), the more favorable scaling
of the bispectrum’s sensitivity may invert the situation,
though there the k-space resolution limit applies. The
bispectrum measurements could achieve σfres ≲ 18 for
Tianlai and σfres ≲ 16 for the SKA1-MID, and the power
spectrum measurements could achieve (for Cω ≲ 100)
σfres ≲ 2.5 for Tianlai and σfres ≲ 2.8 for the SKA1-MID.
Münchmeyer et al. [43] predicted the 1-σ error on fres

from CMB bispectrum measurement to be ∼300–3000 for
Cω ≲ 100 (cf. Fig. 8 in Ref. [43]). We note that, even with
the bispectrum measurement from 21 cm intensity map-
ping, the constraints on fres in the resonant model can be
more than 2 orders of magnitude better than those of the
CMB, and even stronger constraints can be obtained from
the HI power spectrum data, particularly for small Cω.
The constraint on the height of the step in the inflaton

potential is plotted in Fig. 2. The left panel shows σϵstep as a
function of sharpness β, for a given step position
τf ¼ 1440 Mpc. For β ≳ 10, the HI bispectrum measure-
ments could achieve σϵstep ≲ 14 for Tianlai and σϵstep ≲ 5.0
for SKA1-MID; while the HI power spectrum measure-
ments could achieve σϵstep ≲ 0.054 for Tianlai and
σϵstep ≲ 0.026 for SKA1-MID. Since sharper features are
accompanied by a more extended envelope, the sensitivity
increases with larger β. However, we note that the theory is
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measurement with Tianlai when the window function effect is
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Figure 1. Non-scale invariant part of the power spectrum (3.21) for a hyperbolic tangent step (A.6),
evaluated for ✏step = 0.001 and � = 43⇡ for illustration purposes.

a Dirac delta function. Then the integration in the previous equation would give a power-
spectrum which exhibits constant amplitude oscillations with frequency 2k⌧f up to k ! +1.
As we will see better in the next sections, the limit � ! +1 cannot be taken naively since
it is not phyisical, and we must take into account the finite width of the step. The integral
in eq. (3.21) can be analitically evaluated when � � 1 (see appendix A and refs. [19, 50]),
leading to

lnP⇣ = lnP⇣,0 �
2

3
✏stepW

0(k⌧f )D

✓
k⌧f

�

◆
, (3.23)

where D(y) is a damping function normalized to one. As shown in appendix A, D corresponds
to the Fourier transform of the step function F times (�ik), irrespective of the particular
shape of the step. We want to stress that this is a general property for models with very sharp
steps, without any further assumptions on the form of the function F . Some further comments
about eq. (3.23) are in order. The function W

0(x) in (3.22) oscillates between �1 and +1
up to k ! +1 while the function D acts as a damping envelope. As x ! 0, W 0(x) ! 0
and no spurious super-horizon contributions during inflation are generated. Moreover, the
damping, decaying exponentially, “localizes” the oscillations in an e↵ectively finite range in
k-space. This was desirable and confirms our intuition that the feature should not a↵ect
modes either much before or much after the step. This is clearly visible from figure 1: the
largest contribution is in the range of frequencies 1 . k⌧f . �, which refers to the modes
which are inside horizon at the time of the feature but whose momenta are not greater than
the inverse of the time, b = 1/�H, characterizing the sharpness of the step. It is also clear
that, as the parameter � becomes larger, the range in k-space in which there are oscillations
also becomes larger. In the limit of an infinitely sharp step, � ! +1, as we already said,
the power-spectrum would gain oscillations with constant amplitude up to k ! +1. Notice
finally that the total height of the step, namely 2✏step, does not a↵ect neither the frequency
of the oscillations nor the damping and appear in eq. (3.23) only as a multiplicative constant
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21 cm Cosmology – to avoid/distinguish from 
astrophysical uncertainties!

Strategy 2 -- Looking for features less vulnerable to 
unknown astrophysics
ü Velocity Acoustic Oscillations (VAO）

-- probe the small-scale structures with large-scale 
21cm signals è Dark Matter properties

ü Standard ruler è Dark Energy

ü Go to ultra-large scales è PNG, GR effects 



Velocity Acoustic Oscillations (VAO）
= streaming velocity + BAO

Credit:http://burro.case.edu/Academics/Astr328/Notes/StructForm/bao_1d_anim.gif 

(e.g., Tseliakhovich et al. 2011)

vdb field vdb power spectrum
z = 20
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VAO features on 21 cm power spectrum
-- a standard ruler at Cosmic Dawn

Munoz et al. 2022

See also: Dalal+10, Visbal+12, Fialkov+12, McQuinn+12
Munoz 19, Park+19, Cain+20, Sarkar+22 Zhang et al. 2024ApJ...964...62Z

(arXiv:2401.14234)



Cold dark matter 
(CDM) vs. fuzzy dark 
matter (FDM, e.g. 
axion)

1. In FDM model，the lack of small-scale structure（minihalo）leads to the lack of Pop III & VAO signal；

2. The VAO effect makes it possible to detect small-scale via 21 cm at large-scale；

3. Minihalo is less influenced by baryon；

4. At Cosmic Dawn, X-ray heating is positive factor for VAO signal。

minihalo scale

21cm VAO features modulated by small scale structures



CDM vs. axion

Zhang et al. 2024ApJ...964...62Z
(arXiv:2401.14234)

See also Hotinli et al. (2022), Sarkar et al. (2022), Flitter & 
Kovetz (2022), Vanzan et al. (2024)

21cm VAO features modulated by small scale structures



The star formation efficiency & LW feedback

LW radiation can reduce the VAO signal，but cannot fully suppress it



The VAO signal in mixed-DM models

Zhang et al. 2024ApJ...964...62Z 
(arXiv:2401.14234)



Barry et al. arXiv:2110.06173

LOFAR

HERA

SKA SWG Update

Robert Braun, Science Director

9 October 2018

21 cm power spectrum
-- probing large-scale imprints from DM



21 cm Cosmology – to avoid/distinguish from 
astrophysical uncertainties!

Strategy 3 – Breaking the degeneracy with unknown astrophysics

ü21 cm Forest

-- probing the smallest structures at cosmic dawn

è Dark Matter properties



Receiver

21 cm Forest 
-- absorption lines against high-z radio point sources 
(e.g. Carilli et al. 2002; YX et al. 2009, 2010, 2011)



u Sensitive probe to TIGM

Shimabukuro et al. 2014Xu YD et al. 2009, 2010, 2011

u Unique probe to small –scale structures at cosmic 
dawn (CD) à Dark Matter properties at CD

CDM
WIMP/AXION

WDM
Sterile 
Neutrino

HDW
3 Neutrinos

! ∝ 1
T!

21 cm Forest



u Probing thermal history⟺ easily 
suppressed (weak) The 21 cm forest with LOFAR 11

Figure 13. Upper panel: Spectrum of a source positioned at
z = 14 (i.e. ν ∼ 95 MHz), with an index of the power-law
α = 1.05 and a flux density Sin(zs) = 50 mJy. The lines are
the same as those in Figure 10. Here we have assumed the noise
σn given in eq. 3, a bandwidth ∆ν = 20 kHz, smoothing over
a scale s = 20 kHz, and an integration time tint = 1000 h. The
IGM absorption is calculated from the reference simulation L4.39.
Lower panel: σabs/σobs corresponding to the upper panel.

The most challenging aspect of the detection of a
21 cm forest remains the existence of high-z radio loud
sources. Although a QSO has been detected at z = 7.085
(Mortlock et al. 2011), the existence of even higher redshift
quasars is uncertain. The predicted number of radio sources
which can be used for 21 cm forest studies in the whole sky
per unit redshift at z = 10 varies in the range 10 − 104 de-
pending on the model adopted for the luminosity function
of such sources and the instrumental characteristics (e.g.
Carilli et al. 2002; Xu et al. 2009), making such a detection
an extremely challenging task. The possibility of using GRB
afterglows has been suggested by Ioka & Mészáros (2005),
concluding that it will be difficult to observe an absorption
line, even with the SKA, except for very energetic sources,
such as GRBs from the first stars. In fact, a similar calcula-
tion has been repeated more recently by Toma et al. (2010)
for massive metal-free stars, finding that the flux at the same
frequencies should typically be at least an order of magni-
tude higher than for a standard GRB.

An absorption feature stronger than the one produced
by the diffuse IGM, would be the one due to intervening star-
less minihalos or dwarf galaxies (i.e. Xu et al. 2011; Meiksin
2011), resulting in an easier detection. On the other hand
the optical depth would strongly depend on the feedback
effects acting on such objects. Because of the large uncer-
tainties about the nature and intensity of high-z feedback
effects (for a review see Ciardi & Ferrara 2005 and its ArXiv
updated version), it is not straightforward to estimate the
relative importance of these two absorption components un-

less a self-consistent calculation is performed. We defer this
investigation to a future paper.
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FIG. 11: Abundance of 21 cm absorption features per redshift
interval at z=10 for different values of TIGM as indicated in
the legend.

nal. Consequences for the halo dark matter profile of
massive neutrinos [60], RSI [61] and WDM [8, 62] have
been studied to some extent for galaxy- to cluster-scale
halos at low redshifts, indicating that they are affected
mainly in the central regions with r/rvir ! 0.1. Although
no corresponding work exists for high-redshift minihalos,
we may speculate that the impact is less than that due
to the mass function with regard to our results, for which
the outer regions of the halo are more relevant (Fig.2).
Nevertheless, this needs to be substantiated by future,
dedicated investigations. Third, we did not account for
neutral gas lying outside the virial radii of minihalos and
accreting onto them, which can provide a significant ad-
ditional contribution to the absorption feature [16, 20].
Albeit challenging to model accurately, such components
should be taken into account for more accurate predic-
tions in the future. Note also the possibility of further
absorption along the line of sight due to the incompletely
virialized cosmic web and/or the global IGM that is ex-
pected to be much weaker [17, 18, 22, 23], and that due
to the disks of larger galaxies that should be individually
stronger but much rarer [16]. Finally, the implications
of relative streaming velocity between baryons and dark

matter [63] may also be interesting for future studies of
the 21 cm forest.

To conclude, we have presented a novel approach to
probe small-scale cosmological fluctuations utilizing the
21 cm forest, that is, absorption features caused by HI
gas in minihalos in the spectrum of background radio
sources at redshifts at z ∼ 10 and above. The method
is potentially sensitive to scales k " 10 Mpc−1, much
smaller than can be currently studied via observations
of the CMB, galaxy clustering or the Lyα forest. New
insight can be expected into aspects of physics beyond
the standard ΛCDM cosmological model such as mas-
sive neutrinos, running of the primordial spectral index
and warm dark matter. Radio quasars or Population III
gamma-ray bursts are potential candidates for the back-
ground radio sources with the requisite brightness and
number at the appropriate redshifts for future observa-
tions with SKA.

Further potentially interesting cosmological applica-
tions of the 21 cm forest include probes of primor-
dial non-Gaussianity in relation to either the nonlinear,
scale-dependent bias [64] or the halo mass function [65],
and probes of isocurvature primordial perturbations (e.g
[66]). We note that several recent papers have discussed
the possibility of studying various aspects of the SSPS via
the 21 cm emission signal [67], although efficient removal
of the far brighter foreground emission poses a major ob-
servational challenge for realizing such prospects [29].
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other interpretations are possible and these observations
cannot yet be taken as definitive evidence of WDM or
measurement of its mass.

IV. DISCUSSION AND SUMMARY

We now turn to a discussion of the observability of the
21 cm forest due to minihalos. The principal question
is the existence of background radio sources with suffi-
cient brightness and number at the relevant frequency
and redshifts of z ∼ 10 − 20. The low temperatures
of minihalos imply that the width of the expected ab-
sorption features are narrow, necessitating spectroscopy
with frequency resolution of order ∆ν ∼ kHz at observer
frequencies νobs ∼ 70-130 MHz. Following and updat-
ing [16], in order to detect absorption features of optical
depth τ with frequency resolution ∆ν and signal-to-noise
S/N with an integration time tint, the required minimum
background source brightness is
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FIG. 10: Abundance of 21 cm absorption features per redshift
interval at z = 10 (top) and z = 20 (bottom) for WDM with
various particle masses as indicated in the legend.
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where the specifications anticipated for SKA2-low are
adopted for the effective collecting area Aeff and system
temperature Tsys [50, 51].
Our results in Section III at face value show that spec-

troscopy of a single source with such properties at z ∼ 10
may reveal tens to hundreds of absorption features with
τ ∼ 0.01 − 0.1, which could already provide important
information on the SSPS. Multiple sources would still be
desirable to characterize fluctuations along different lines
of sight. On the other hand, at z ∼ 10, our neglect of
astrophysical effects such as the UV background or reion-
ization and heating of the IGM is hardly justifiable. As
mentioned below, in reality, such effects may completely
dominate over any of the SSPS-related effects discussed
above, which were quite small already at z = 10 except
for the case of WDM.
In this regard, z ∼ 20 or higher would be much more

preferable, since the formation of stars and galaxies and

Shimabukuro et al. 2014
Xu YD et al. 2011



Key strategy #1: multi-scale hybrid modeling

u Large scales: semi-numerical simulation

~ kpc
5003 GridsBox
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Extended Data Figure 4 | Neutral hydrogen overdensity profiles inside and outside

the virial radius of a halo at z = 9. The green, yellow and red lines correspond to halo

mass of 106M�, 107M� and 108M�, respectively.

Extended Data Figure 5 | Probability density distribution of the gas overdensity at z

= 17. The black solid line is the probability density distribution from the GADGET simulation

with a box size of 4 h
�1Mpc and 2 ⇥ 8003 gas and DM particles. The blue dashed line

is the one derived from our hybrid approach with the same resolution as the GADGET

simulation.

47

Extended Data Figure 8 | Evolution of the global gas temperature with redshift. The

blue, green, yellow and red lines correspond to fX = 0, 0.1, 1 and 3, respectively.

Extended Data Figure 9 | Temperature profiles of gas inside and outside the virial

radii of halos at z = 9 with an un-heated IGM (fX = 0). The green, yellow and red lines

correspond to halo masses of 106M�, 107M� and 108M�, respectively.
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u Small scales: analytic modeling
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The mock 21 cm signals

Figure 1 | The synthetic spectra of optical depth (upper panels) and brightness

temperature (lower panels) for a neutral patch of 10 comoving Mpc along the line of

sight, for an un-heated IGM (fX = 0) at z = 9. In each row, the four columns correspond

to the CDM model, and the WDM models with mWDM = 10 keV, 6 keV, and 3 keV, from left

to right respectively. In the lower panels, the green, yellow, and red spectra correspond to

the background source flux densities of S150 = 1 mJy, 10 mJy, and 100 mJy, respectively.

The spectra have been smoothed with a channel width of 1 kHz, and the dotted and

dashed lines are the thermal noise levels �T
N expected for SKA1-LOW and SKA2-LOW

respectively, with an integration time of �t = 100 hr.
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Figure 2 | The synthetic spectra of optical depth (upper panels) and brightness

temperature (lower panels) for a neutral patch of 10 comoving Mpc along the line

of sight, for the CDM model at z = 9. In each row, the four columns correspond to fX

= 0, 0.1, 1, and 3, from left to right respectively. In the lower panels, the green, yellow,

and red spectra correspond to S150 = 1 mJy, 10 mJy, and 100 mJy, respectively, and the

dotted and dashed lines are the thermal noise levels �T
N expected for SKA1-LOW and

SKA2-LOW respectively, with �⌫ = 1 kHz and �t = 100 hr. The zoom-in plots in the upper

panels show the 21-cm optical depth with different scales in the y-axes.
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SKA1-Low

SKA2-Low

where Ae↵ is the effective collecting area of the telescope, Tsys is the system temperature, �⌫ is the

channel width, and �t is the integration time. The corresponding thermal noise temperature is:

�T
N = �S

N

✓
�
2

z

2kB⌦

◆
⇡

�
2

zTsys

Ae↵⌦
p
2�⌫�t

, (16)

where �z is the observed wavelength, and ⌦ = ⇡(✓/2)2 is the solid angle of the telescope beam,

in which ✓ = 1.22�z/D is the angular resolution with D being the longest baseline of the ra-

dio telescope/array. For the SKA1-LOW, we adopt Ae↵/Tsys = 800m2K�1 31, and Ae↵/Tsys =

4000m2K�1 is expected for SKA2-LOW2. For both arrays, we assume D = 65 km and �t = 100

hr, and �⌫ = 1 kHz is assumed in order to resolve individual 21-cm lines. Correspondingly, the

synthetic spectra shown in Figs. 1 and 2 are smoothed with the same channel width. At redshift z =

9, the angular resolution is about 8.17 arcsec, and the noise temperature is plotted with dotted and

dashed lines in the lower panels in Figs. 1 and 2, for SKA1-LOW and SKA2-LOW respectively.

1-D power spectrum of 21-cm forest. It is seen from Fig. 2 that the direct measurement of in-

dividual absorption lines is vulnerably hampered by the early X-ray heating. In order to improve

the sensitivity for detecting the 21-cm forest signal, and to reveal the clustering properties of the

absorption lines so as to distinguish the effects between heating and WDM models, we follow the

algorithm in Ref.18, and compute the 1-D power spectrum of the brightness temperature on hypo-

thetical spectra against high-redshift background sources. The brightness temperature �Tb(ŝ, ⌫) as

a function of observed frequency ⌫ can be equivalently expressed in terms of line-of-sight distance
2https://www.skao.int/en/science-users/118/ska-telescope-specifications
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Key strategy #2: 1-D cross-power spectrum

u Cross-correlate two measurements to 
suppress the noise

Figure 3 | The expected 1-D power spectrum of 21-cm forest at z = 9 from a total

of 100 measurements on segments of 10 comoving Mpc length in neutral patches

along lines of sight against 10 background sources with S150 = 10 mJy. The left

panel shows the 1-D power spectra in the CDM model, and the blue, green, yellow and

red curves correspond to fX = 0, 0.1, 1 and 3, respectively. The right panel shows the 1-D

power spectra for an un-heated IGM (fX = 0), and the blue, green, yellow and red curves

correspond to the CDM model and the WDM models with mWDM = 10 keV, 6 keV, and 3

keV, respectively. The black dotted and dashed lines in each panel are the thermal noises

P
N expected for SKA1-LOW and SKA2-LOW respectively, with �t = 100 hr, and the error

bars show the total measurement errors of SKA2-LOW.
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rz, �T 0
b
(ŝ, rz), and the Fourier transform of �T 0

b (ŝ, rz) is

� eT 0 �ŝ, kk
�
=

Z
�T

0
b
(ŝ, rz) e

�ikkrz drz. (17)

The 1-D power spectrum along the line of sight is defined as:

P
�
ŝ, kk

�
=

���� eT 0 �ŝ, kk
����

2
✓

1

�rz

◆
. (18)

The term 1/�rz is the normalization factor, in which �rz is the length of sightline under consid-

eration. To reveal the small-scale structures we are interested in, we select neutral patches with

�rz = 10 comoving Mpc, and compute the 1-D power spectra from segments of 10 comoving

Mpc along the line of sight. For a reasonable number of O(10) high-z background sources, the

expected value of the power spectrum is obtained by averaging over 100 neutral patches on lines

of sight penetrating various environments3, i.e. P
�
kk
�
⌘

⌦
P
�
ŝ, kk

�↵
. For the rest of the paper,

we abbreviate kk as k, as here we are always interest in the k-modes along the line of sight.

Extended Data Fig. 10 shows the evolution of the 1-D power spectrum with redshift. The

solid lines in the left and middle panels show the power spectra in the CDM model and in the WDM

model with mWDM = 3 keV respectively, in the absence of X-rays. As the redshift increases, the

halo abundance decreases, and the small-scale fluctuations in the forest signal decrease, resulting

in steeper power spectra. The small-scale power is slightly more significantly suppressed in the
3On each quasar spectrum, we will be able to select ⇠ 10 segments of 10 comoving Mpc length in neutral patches;

as the neutral patches are intermittently separated by ionized regions during the EoR, we may need a spectrum covering

⇠ 200 comoving Mpc along the line of sight. A length of 200 comoving Mpc projects to a total bandwidth of about

14 MHz at redshift 9, corresponding to �z ⇠ 0.8, which is reasonable in practice.
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WDM model, as the halo formation is more delayed. However, the redshift evolution has only

a weak effect on the 1-D power spectrum in the absence of X-ray heating. The right panel of

Extended Data Fig. 10 illustrates the evolution of the 1-D power spectrum in the CDM model

with fX = 3. In the case of strong X-ray heating, the 1-D power spectrum of the 21-cm forest

is dramatically suppressed with the decreasing redshift, and the dominant reason is the rapidly

increasing IGM temperature. It implies that for the purpose of constraining DM properties, the

1-D power spectrum measurement at higher redshift is preferred, as long as a radio-bright source

at an even higher redshift is available.

Measurement error on 1-D power spectrum. The observational uncertainties in the 21-cm for-

est include the thermal noise, the sample variance, the contaminating spectral structures from

foreground sources in the chromatic sidelobes, and the bandpass calibration error. The bandpass

calibration error depends on specific calibration strategies, and mainly affects the broadband am-

plitude of the continuum, so we expect that it has a negligible effect on the small-scale features

we are interested in. The contaminating spectral structures from foregrounds are not likely affect-

ing the small structures we are aiming at, as the discriminating features locate at k & 3Mpc�1,

which are well within the “EoR window”18. Therefore, we consider only the thermal noise of an

interferometer array, and the sample variance in the power spectrum measurement.

The sample variance on the 1-D power spectrum is P
S = �P (k)/

p
Ns ·Nm, where �P (k)

is the standard deviation of P (k) from Ns · Nm measurements of the 1-D power spectrum at k,

in which Ns is the number of 1-D power spectrum measurements on different neutral patches of
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�rz, and Nm is the number of independent modes in each k-bin from each measurement. Using 10

high-redshift background radio sources, it is reasonable to expect about 100 independent measure-

ments of 1-D power spectra from segments of spectra, each corresponding to a comoving length

of 10 Mpc. We adopt Ns = 100, and �P (k) is obtained by simulating 21-cm forest signals from

Ns neutral segments of 10 comoving Mpc length penetrating various environments covering grid

densities from � = �0.7 to � = +1.5.

As for the thermal noise error, we follow the approach taken by Ref.18, and assume that each

spectrum is measured for two times separately, or the total integration time is divided into two

halves, and the cross-power spectrum is practically measured in order to avoid noise bias. Then

the observing time for each measurement of the spectrum is �t0.5 = 0.5 �t, and the thermal noise

on the spectrum is increased by a factor of
p
2. Then the thermal noise uncertainty on the 1-D

power spectrum is given by18

P
N =

1
p
Ns

✓
�
2

zTsys

Ae↵⌦

◆2 ✓ �rz

2�⌫z�t0.5

◆
, (19)

where �⌫z is the total observing bandwidth corresponding to �rz. A distance of 10 comoving Mpc

along the line of sight corresponds to a bandwidth of �⌫z = 0.56 MHz at z = 9. Assuming the

same telescope parameters of SKA1-LOW and SKA2-LOW as those for the direct measurement,

and the same observation time of �t = 100 hr (�t0.5 = 50 hr) on each source, the expected thermal

noise on the 1-D power spectrum of 21-cm forest is plotted in Figs. 3 and 4, as well as in Extended

Data Fig. 10, with dotted lines for SKA1-LOW and dashed lines for SKA2-LOW, respectively.

The total measurement errors including the thermal noises of SKA2-LOW and sample variance

are shown with the error bars in these figures. We have tested the extraction of 21-cm forest 1-
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~ 10 sources with S150 = 10 mJy at z = 9

tint = 2 * 50 hr
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1-D cross-power spectrum è Two birds with one stone

u Technologically:

1. Increase the 
sensitivity à feasible

2. Breaking the 
degeneracy à
simultaneous 
constraints

u Scientifically:
1. DM particle mass
2. Cosmic thermal 

history

Amplitude 

Slope 

Figure 4 | The expected 1-D power spectrum of 21-cm forest at z = 9 for different

heating histories (upper panels) and different DM models (lower panels), assuming

a total of 100 measurements on segments of 10 comoving Mpc length in neutral

patches along lines of sight against 10 background sources. The upper panels show

the power spectra in the CDM model assuming fX = 0, 0.1, 1, and 3, from left to right

respectively. The lower panels show the power spectra for the CDM model and the WDM

models with mWDM = 10 keV, 6 keV, and 3 keV, from left to right respectively, assuming an

un-heated IGM (fX = 0). In each row, the green, yellow and red curves correspond to the

flux densities of the background point sources with S150 = 1 mJy, 10 mJy and 100 mJy,

respectively. The black dotted and dashed lines are the thermal noises P
N for SKA1-

LOW and SKA2-LOW respectively, with �t = 100 hr, and the error bars show the total

measurement errors of SKA2-LOW.
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21 cm forest: a simultaneous probe of 
DM & first galaxies

u For	SKA1-Low:

"!!"# = ". $ %&' ()* +"$%# = $. , -
u For	SKA2-Low:

+!!"# = .. $ %&' ()* +"$%# = .. / -

u For	SKA2-Low:

+!!"# = .. / %&'
()* +"$%# = 00 -

Using ~ 10 sources with S150 = 10 mJy at z = 9

Figure 6 | Constraints (68.3% and 95.4% confidence level) on TK and mWDM with

the 1-D power spectrum of 21-cm forest at z = 9, assuming a total of 100 measure-

ments on segments of 10 comoving Mpc length in neutral patches along lines of

sight against 10 background sources with S150 = 10 mJy. The gray and blue contours

correspond to results for SKA1-LOW and SKA2-LOW, respectively, including the sample

variance and the thermal noise with observation of 100 hr on each source. The fiducial

model of the left panel is mWDM = 6 keV and TK = 60 K (corresponding to fX = 0.1), and

the fiducial model of the right panel is mWDM = 6 keV and TK = 600 K (corresponding to

fX = 1).
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Figure 6 | Constraints (68.3% and 95.4% confidence level) on TK and mWDM with

the 1-D power spectrum of 21-cm forest at z = 9, assuming a total of 100 measure-

ments on segments of 10 comoving Mpc length in neutral patches along lines of

sight against 10 background sources with S150 = 10 mJy. The gray and blue contours

correspond to results for SKA1-LOW and SKA2-LOW, respectively, including the sample

variance and the thermal noise with observation of 100 hr on each source. The fiducial

model of the left panel is mWDM = 6 keV and TK = 60 K (corresponding to fX = 0.1), and

the fiducial model of the right panel is mWDM = 6 keV and TK = 600 K (corresponding to

fX = 1).
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21 cm Cosmology: challenging but intriguing!

u Vital to avoid/distinguish from astrophysical uncertainties!

u Strategy 1 -- Looking for features not affected by later baryonic physics

ü The cosmological standard ruler – 21 cm BAO  -- Dark Energy  -- comparable to stage IV 

ü Go to ultra-large scales -- PNG & Inflation physics -- powerful for inflation models with oscillatory features

u Strategy 2 -- Looking for features less vulnerable to unknown astrophysics

ü 21cm VAO -- probe the small-scale structures with large-scale 21cm signals à distinguish DM models 

u Strategy 3 – Breaking the degeneracy with unknown astrophysics

ü 21 cm Forest -- probing the smallest structures at cosmic dawn a simultaneous probe of DM & first galaxies



Thank you!


