21cm cosmology workshop and Tianlai Collaboration Meeting 2024

Low Frequency Astronomy from the Moon

Xuelei Chen National Astronomical Observatories Chinese Academy of Sciences

Hangzhou, 2024.07.22

Difficulties of low frequency Ground Observation

Space--avoid the ionosphere, RFI, ground reflection, and open up the last EM window

Low Frequency Radio – the last blank in EM spectrum

Due to ionosphere absorption, the sky below 30MHz is still largely unknown. Compared with other frequencies, the map at this band is very crude

Haslam Map (408 MHz)

RAE-2 map (4.7 MHz)

The Light in the Dark Ages—21cm line

(XC& J. Miralda-Escude 2004, 2008)

EDGES vs. SARAS Results

see the talks in the global spectrum session

The Moon can shield RFI and provide ideal site

low frequency radio experiments during Chang'e-4 mission

RAE-2 spectrum

Longjiang-2 spectrum

Low frequeny needs Interferometer

For the wavelength (10m~300m) of our interest, it is impractical to achieve good angular resolution with single antenna.

 Interferometer produce crosscorrelations (visibilities) of electrical signal at different space points, roughly corresponding to Fourier components of sky intensity

 $\theta: \frac{\lambda}{D}$

$$V_{ij} = \int A_{ij}(\hat{k}) T(\hat{k}) \ e^{-i\vec{k}\cdot\vec{r}_{ij}} d^2\hat{k},$$

Science Case for low-frequency: Observing the Sun and Planets

- Lower frequency observation traces solar burst emission at larger distance from the Sun
- low frequency emission from giant planets reveal magnetospheric dynamics, solar wind magnetosphere coupling, and electrodynamic coupling of the magnetosphere with planet's moons.
- A number of spacecrafts carried low frequency detectors

H.A.S. Reid (2015)

Mimoun et al.(2012)

Science Case: Open Up A New Observational Window

supernova remnants

What new objects will we see in the ultralong wavelength? What secret of the Nature will this observation reveal?

radio galaxies

Science Case of low frequency: Dark ages and Cosmic Dawn

- The 21cm global specrtrum could be measured with single antenna and probe cosmic dawn and dark ages
- In a lunar orbit global spectrum, ionosphere & external RFI can all be avoided, and ground reflection will not producing features at the relevant delay space

Cohen et al. (2018)

Lunar-based Ultralong wavelength Astronomy

Different frequencies trace different instances of the evolution of the early structures in the Universe

Observing 21cm fluctuations in the dark age requires extremely high sensitivity and large receiving area. Before that is realized, we need to first observe the 21cm global spectrum, and make some less demanding astronomical observations at ultralong wavelength.

CoDEX Mission	Dark Ages z=30, Power Spectra	Dark Ages z=30, Tomography	Dark Ages z=50, Power Spectra	Dark Ages z=50, Tomography
CoDEX (1 km ²) M-class	S/N~10 for k~0.01-0.1	S/N~5 for k=0.01	S/N<1	S/N<1
CoDEX (10 km ²) L-class	S/N~10-100 for k~0.01-1.0	S/N~10-100 for k~0.01-0.1	S/N>10 for k~0.01-1	S/N>10 for k~0.01
CoDEX (100 km ²) L-class	S/N~100-1000 for k~0.01-1.0	S/N~10-1000 for k~0.01-0.4	S/N>100 for k~0.01-1	S/N~10-100 for k~0.01-0.1

Koopmans et al., arxiv:1908.04296

Low Frequency Radio—Project Ideas

Lunar Orbit:

Engineeringly simpler, no need to land, and can use solar power

- single satellite: Dare/Dapper (USA), Pratush/SEAM (India), CosmoCube (UK)
- satellite array: DSL (China), MOIRE (Europe)

Lunar Surface:

Engineeringly more complex, but have stable platform

- small scale experiment: LuSee (USA)
- Farside: ALO (Europe), FARSIDE/FARVIEW (Europe), LARAF (China), LCRT (USA)

DAPPER

Low Frequency Radio--antennas

To minimize the weight to be carried, may need new antenna designs

dish antenna (all frequencies)

dipole antenna (low frequency)

membrane antenna (lunar low frequency)

S. Bandyopadhya (2021)

Prof. Huilong Zheng (private communication)

Maybe even antenna manufactured *in site* (e.g. FarView project, Polidan et al. 2024)

But: the membrane antenna remains to be tested

a piece of polyimide-based membrane test sample on ground

Suonanben et al. 2024, to appear on ATI

Lunar Surface Arrays

M. Klein-Woit (2023)

LARAF (Chen et al. 2023)

lunar orbit array (DSL--Hongmeng)

- lunar satellite: engineeringly simpler, no need for landing & deployment
- Lunar orbit period is about 2 hours, can use solar power
- Observe in the far side of the Moon, and transmit data back in the front side
- Launched by one rocket, all flying on the same orbit, easy to maintain and communicate

DSL:

1 mother satellite (communication & data processing)

- + 8 daughter satellite (0.1-30 MHz interferometry & global spectrum)
 - + 1 daughter satellite (30-120 MHz global spectrum)

mother-daughter combo at launch

Collecting Baselines

one orbit cycle

orbital plane precession

300km altitude, 30 degree inclination is chosen

Improving baseline distribution: breathing motion

to improve uvw coverage:

Equal propellant; consumption for all daughter satellites

Requirements and Parameters Summary

Science	Observable	Measurement	Parameter	Payload
cosmic dawn and dark ages	21cm global spectrum (high precision 30-120 MHz, good precision 0.1-30 MHz)	30MHz–120MHz single antenna measurement	frequency band: 30-120MHz sensitivity: <0.1K@80MHz (1MHz channel, 10 min integral) spectral resolution: <100kHz Antenna Beam non-chromatic: no sidelobe	1 daughter satellite
High Resolution whole sky survey, open up last window in EM spectum	1-30MHz whole sky map and source catalogue	multi-satellite interferometry taken with daughter satellites, data communication and processing on mother satellite, Position determination by ranging and angular measurement. Downlink to Ground	band: 0.1-30MHz spatial resolution: <0.18° @1MHz, 0.012°@30MHz antenna: 3 polarization Tsys: <120% Tsky (1-30MHz) gain stability < 0.02dB/°C Amplitude Error: 0.5dB Phase error: 50° baselines: 100m–100km ranging error: ≤1m angular error: ≤2" clock synchronization error: 3.3ns communication range: 10km- 120km	8 daighter satellites with interferometric spectrometer, inter-sat communication, ranging and synchronization, star sensor; 1 mother satellite for communication system, correlator, calibration source
solar and planet ultralong wave radiation	monitoring of continuum spectrum for solar radio burst and planetary radio	Time Allocation or Event triggering	frequency band: 0.1-30MHz dynamic range: 60dB time resolution : second spectral resolution: >8192	

Noise & Sensitivities

Subtle Issues

• Doppler Effect: affect phase

rotation around Sun: 30 km/s rotation around Earth: 1 km/s rotation around Moon: 1.7 km/s

Direction-dependent correction needs to be applied while doing reconstruction

- Aliasing Effect (Moire pattern)
- Reflections from the Moon
- Impact of Variable Sources

$$V_{ab}(t, \nu) = \int d^2 \hat{k} B_{ab}(\nu, \hat{k}) I(\nu', k') e^{-ik' \cdot r_{ab}}$$

$$\approx \int d^2 \hat{k} B_{ab}(\nu, \hat{k}) I[\nu(1 - \beta \cdot \hat{k}), k/(1 + \beta \cdot \hat{k})]$$

$$\times e^{-i(1 - \beta \cdot \hat{k})(k \cdot r_{ab})}.$$

$$\approx \int d^2 \hat{k} B(\nu, \hat{k}) I[\nu, \hat{k}] e^{-i(1 - \beta \cdot \hat{k})(k \cdot r_{ab})}.$$

Global Spectrum Measurement (HF)

Simulation & Error propagation analysis

We use the error parameters given by VNA manufactures (e.g. Keysight) to estimate the error

Calibration Error in 21centimeter Global Spectru Experiments

Shijie Sun et.al. Universe **2024**, *10*(6), 236

Antenna Chromaticity

v [MHz]

100

Fitting with a smooth foreground model

Y. Shi et al. (2022), ApJ 929, 32

Field Tests

EDGES type, with hexgonal antenna

Antarctica Experiment

Shijie Sun with the solar panels

Field Test Result

DSL Project Status

- Chief Scientist: Xuelei Chen (NAOC) Chief Engineer (payload): Jingye Yan (NSSC) Satellite Platform: Xiaofeng Zhang (IAMC)
- First proposed in 2015 as a China-Europe joint project
- Intensive Study (2018-2020) successfuly completed
- Aiming for a mission launch in 2027

X. Chen et al. arxiv:1907.10853

Chen et al., arxiv:2007.15794

Summary

2040-2050

array with 10² antennas to make astrophysical observations

2030-2040

first step experiments with $10^0 \sim 10^1$ antennas

2020-2030