

Cosmology with fast radio bursts in the era of SKA

Ji-Guo Zhang (张骥国)

Department of Physics, College of Sciences, Northeastern University (NEU) Collaborators: Ze-Wei Zhao, Yichao Li, Jing-Fei Zhang, Di Li (NAOC), Xin Zhang

> 21 cm Cosmology Workshop 2023 & Tianlai Collaboration Meeting 19 Jul 2023

arXiv: 2307.01605

Outline

Background information of FRBs

Challenges faced in the cosmology

Results and Summary

Event rate: ~ 1000	/day
Observed: > 800	
Repeaters: 50	
Galactic: 1	
Localized: 24	Facts List

Fast Radio Bursts (FRBs)

Fast: Narrow pulses (few ms) Radio Band: 400 MHz–3 GHz Burst: Relatively bright radio sources (few Jy) "The most important discovery in astronomy since LIGO"

–AAS Press 2017

Credit: J. JOSEPHIDES/CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING/SWINBURNE UNIVERSITY OF TECHNOLOGY

01 Dispersion Measure (DM)

01 Use FRBs as a probe of the Universe

02 Dark energy

However $\left\{\begin{array}{c} \text{the fine-tuning problem} \\ \text{the coincidence problem} \end{array}\right\}$ many dark energy models have been proposed, e.g., dynamical dark energy models...

Cosmic Microwave Background Credits:https://www.nationalgeographic.com

It is essential to develop independent late-universe cosmological probes!

Can SKA-era FRBs as a late-universe probe independently and precisely measure dark energy?

02 Hubble tension

Credits:https://www.nationalgeographic.com

02 "Missing baryon" problem

What extent can SKA-era FRBs measure the baryon density to solve the missing baryon problem?

02 How many FRBs will be detected by the SKA?

	Fluence F_{ν} Parkes		e threshold (Jy ms)	All-sky event rate N' _{sky} (sky ⁻¹ day ⁻¹)	Reference		
			2	$1.7^{+1.5}_{-0.9} \times 10^3$	Bhandari et al., 2018		
	ASKAP		26	37 ± 8	Shannon et al., 2018		
E	xtra polate $N_{\rm sky}(>F_{\nu})=1$		$(>F_{\nu})=N_{\rm sky}'$	$\left(\frac{F_{\nu}}{F_{\nu}'}\right)^{\alpha} [\mathrm{sky}^{-1} \mathrm{day}^{-1}] \qquad N_{\mathrm{sur}} = N$	$\Gamma_{\rm sky}[{ m sky}^{-1}{ m day}^{-1}]\Omega[{ m sky}\ { m FoV}^{-1}]{ m t}_{\rm obs}[{ m day}^{-1}]$	$[sky FoV^{-1}]t_{obs}[day yr^{-1}]$	
			Fluence threshold F _v (Jy ms)	All-sky event rate N _{sky} (sky ⁻¹ day ⁻¹)	Detection event rate N _{sur} (FoV ⁻¹ yr ⁻¹)		
	SKA1-N (Based on F	IID Parkes)	0.014	$2.9^{+2.6}_{-1.5} \times 10^{6}$	$1.0^{+0.9}_{-0.5} imes 10^5$		
	SKA1-N (Based on A	IID (SKAP)	0.014	$3.0^{+0.7}_{-0.6} \times 10^{6}$	$1.0^{+0.3}_{-0.2} imes 10^5$		

About $10^5 - 10^6$ FRBs can be detected by SKA1-MID in a 10-year observation.

O2 Simulation of FRB data detected by the SKA

We choose Λ CDM, wCDM and $w_0 w_a$ CDM models as fiducial models to generate $10^5 - 10^6$ mock FRB data

03 Results–Dark Energy ("Pre-SKA" era)

03 Results–Dark Energy (SKA era)

Results–Hubble constant ("Pre-SKA" era)

03 Results–Hubble constant (SKA era)

03 Results–Baryon density

In the many cases (different datasets and constrained parameters), we conclude that

03 Summary

Tremendous FRBs to be detected by the SKA can answer three important issues in cosmology.

- Using only the localized FRBs in the era of the SKA could answer
- > What the nature of dark energy is (~ 2% 5%).
- > Where the missing baryons are ($\sim 0.1\%$).
- Combined with future GW data could also answer
- > Which H_0 measurement (67 or 74?) is true (< 0.1%).

