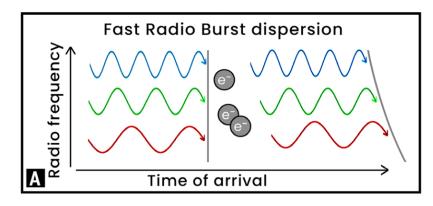
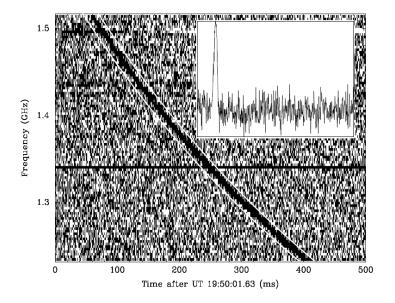


Using unlocalized fast radio bursts to measure the Hubble constant

Ze-Wei Zhao

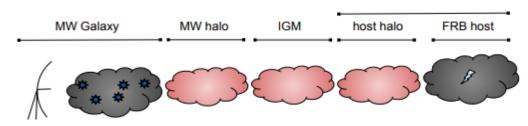
Northeastern University


in collaboration with


Prof. Xin Zhang, Yichao Li, Jing-Fei Zhang, and Dr. Ji-Guo Zhang

Fast radio burst and dispersion measure

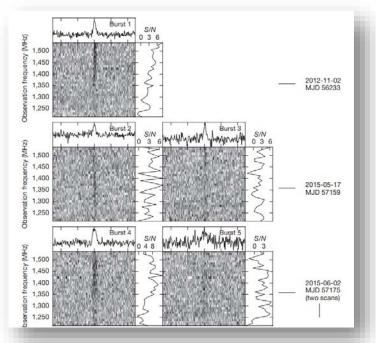
- Fast radio bursts (FRBs) are bright and millisecond pulses in the radio band.
- dispersion measure (DM) : FRB can interact with free electrons and generate dispersion. It equals the column electron density to a given FRB,

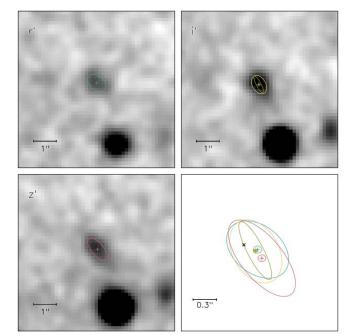

$$DM = \int_0^L \frac{n_e(l)}{1+z} dl.$$

DM contributions from different parts

• the observed DM : the Milky Way's interstellar medium (ISM), Galactic halo, the intergalactic medium (IGM), and the host galaxy,

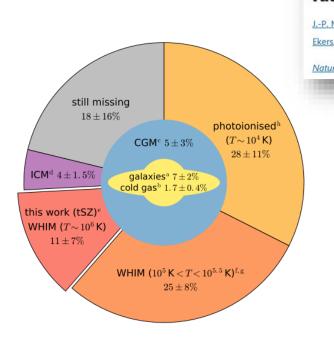
 $\mathrm{DM} = \mathrm{DM}_{\mathrm{MW,ISM}} + \mathrm{DM}_{\mathrm{MW,halo}} + \mathrm{DM}_{\mathrm{IGM}} + \mathrm{DM}_{\mathrm{host}}.$


• The mean value of DM_{IGM} at redshift z is given by the Macquart relation,


$$\langle \mathrm{DM}_{\mathrm{IGM}} \rangle = \int_0^z \frac{c\bar{n}_e(z')\mathrm{d}z'}{H_0(1+z')^2 E(z')} = \frac{3cf_0\Omega_{\mathrm{b}}H_0^2}{8\pi Gm_{\mathrm{p}}H_0} \int_0^z \frac{\chi(z')(1+z')\mathrm{d}z'}{E(z')}.$$

• The FRB data with redshift can be used to constrain cosmological parameters.

Repeating FRBs and localized FRBs

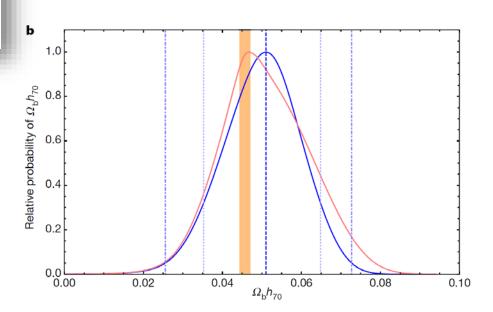

• FRB 121102 was found to repeat, and follow-up observation further localized it to its host galaxy (z = 0.193).

- localized FRB: a precise localization suitable for the identification of host.
- Localized FRBs can be used to constrain cosmological parameters.

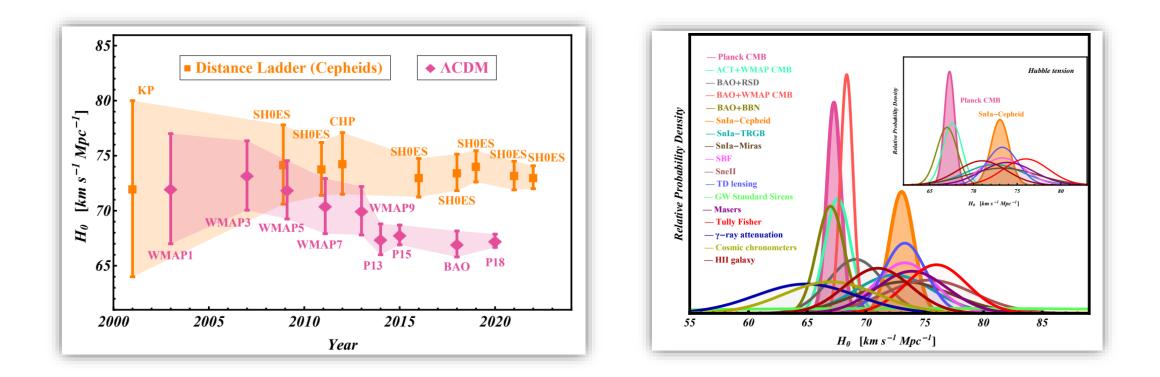
Using localized FRBs to detect baryon

radio bursts J.-P. Macquart 🖾, J. X. Prochaska 🖾, M. McQuinn, K. W. Bannister, S. Bhandari, C. K. Day, A. T. Deller, R. D. Ekers, C. W. James, L. Marnoch, S. Osłowski, C. Phillips, S. D. Rvder, D. R. Scott, R. M. Shannon & N. Teios Nature 581, 391-395 (2020) Cite this article 1.000 - DM_{cosmic}(z) Planck15 cosmology FRB 180924 FRB 181112 FRB 190102 19060 FRB 190711 (pc cm⁻³) EBB 12110 600 FRB 190523 FRB 19061 400 DM 200 0.0 0.2 0.6 0.1 0.3 0.4 0.5 0.7 ZFRB

A census of baryons in the Universe from localized fast


"missing baryon" problem: the observed low-redshift baryon density < mean value of the universe.

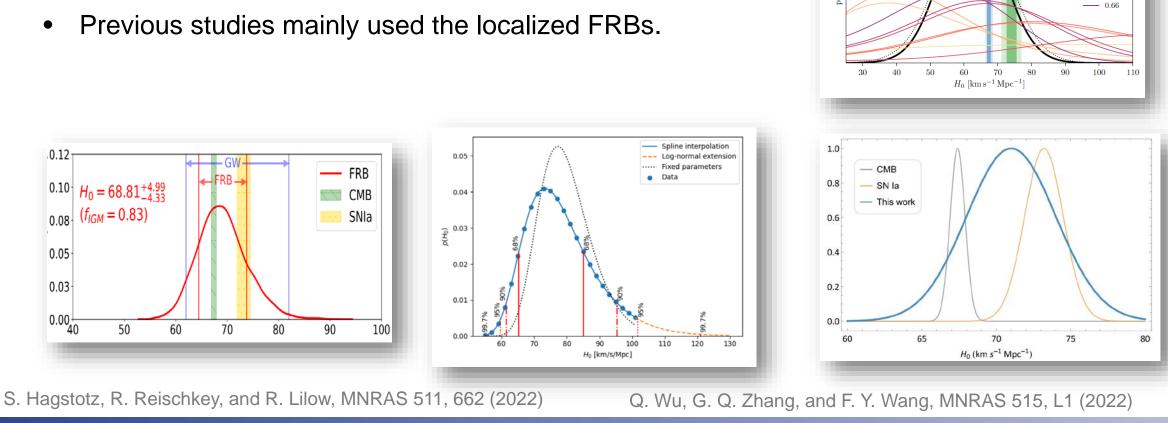
• The Macquart relation of several localized FRBs.


• The constraint from localized FRBs is consistent with the result of CMB + BBN.

nature

J. P. Macquart *et al.*, Nature 581, 391 (2020)

Hubble tension


• It is possible for FRBs to accumulate a lot of data in the future, which can be used to reduce random error.

L. Perivolaropoulos and F. Skara, New Astron. Rev. 95, 101659 (2022)

Measuring Hubble constant using localized FRBs

$$\langle \mathrm{DM}_{\mathrm{cosmic}} \rangle = \frac{3c f_{\mathrm{IGM}} \Omega_{\mathrm{b}} H_0^2}{8\pi G n_{\mathrm{p}} H_0} \int_0^z \frac{\chi(z')(1+z')dz'}{E(z')}, + \text{BBN prior} + \Lambda \text{CDM}$$

Previous studies mainly used the localized FRBs. ullet

C.W. James, E.M. Ghosh, et al., MNRAS 516, 4862 (2023)

0.12

0.05

0.03

0.00↓ 40

Y. Liu, H. W. Yu, and P. X. Wu, ApJL 946, L49 (2023)

all : $H_0 = 62.3 \pm 9.1$

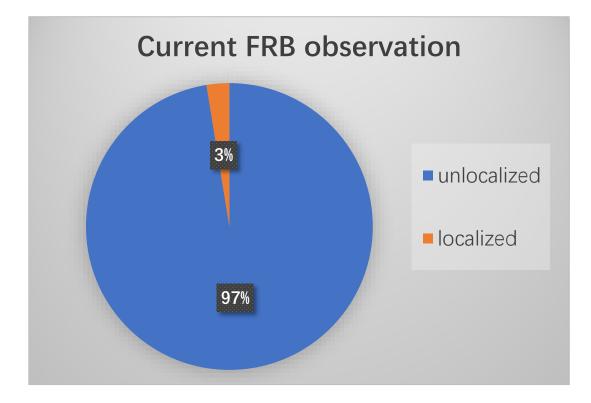
gold : $H_0 = 62.5 \pm 10.1$

de

obability .

FRB redshift

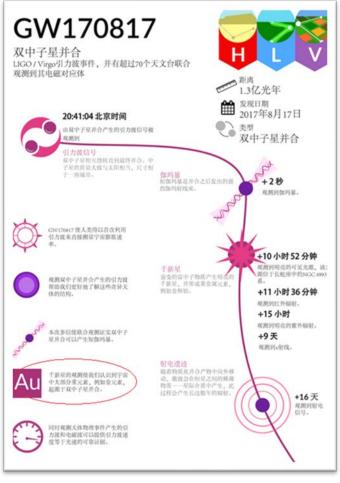

all ----- gold


> 0.03 0.120.19 0.29

0.32

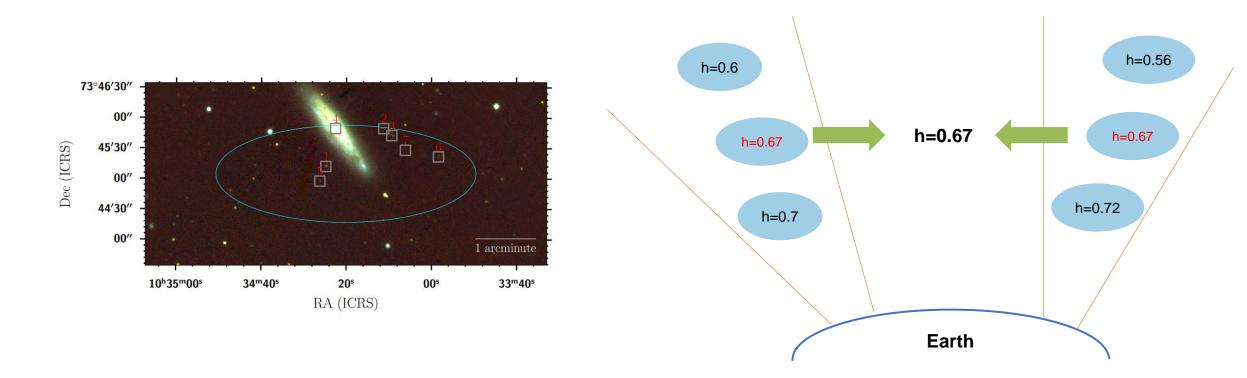
0.38 - 0.48 - 0.52

Current FRB observation



- Only a small number of FRB events are localized to host galaxies.
- How to solve this problem?

Standard siren in gravitational wave cosmology


• Bright siren: uniquely identified host galaxy by gravitational wave's electromagnetic counterpart.

Dark siren: \bullet -0.045-0.040statistical analysis -0.035of multiple potential 0.030-20° host galaxies. 0.025 Hills Declinat -25° 0.015-0.0100.005 205° 200° 195° 190° Right Ascension 0.6 -70 0.5 0.25 $p(H_0|\{x_{GW}\}, \{D_{GW}\}) \text{ (km}^{-1} \text{ s Mpc)}$ -60 0.20 0.4 -50 0ptimal SNR 0.3-0.2--30 -20 0.0+ 20 45 95 120 $H_0 \ ({\rm km \ s^{-1} \ Mpc^{-1}})$

M. Fishbach et al.[LIGO Scientific and Virgo Collaborations], ApJL 871, L13 (2019)

Dark siren in gravitational wave cosmology

- dark siren: estimate the Hubble constant using binary black holes.
- We develop the dark siren method to the unlocalized FRBs.

DM contribution of host and IGM

• The probability distribution of DM_{host} is modeled by a log-normal distribution

$$p_{\text{host}}(\text{DM}_{\text{host}}|z, e^{\mu}, \sigma_{\text{host}}) \propto \exp\left[-\frac{(\log \text{DM}_{\text{host}}(1+z) - \mu)^2}{2\sigma_{\text{host}}^2}\right],$$

- The probability distribution of $\mathrm{DM}_{\mathrm{IGM}}$ is

$$p_{\rm IGM}(\rm DM_{\rm IGM}|z, H_0) \propto \left(\frac{\rm DM_{\rm IGM}}{\langle \rm DM_{\rm IGM}\rangle(H_0)}\right)^{-3} \exp\left\{-\frac{\left[\left(\frac{\rm DM_{\rm IGM}}{\langle \rm DM_{\rm IGM}\rangle(H_0)}\right)^{-3} - C_0\right]^2}{18F^2z^{-1}}\right\},$$

• The FRB likelihood is

$$p(\mathrm{DM}_{\mathrm{E}}|z, H_{0}, e^{\mu}, \sigma_{\mathrm{host}}) = \int_{0}^{\mathrm{DM}_{\mathrm{E}}} p_{\mathrm{host}}(\mathrm{DM}_{\mathrm{host}}|z, e^{\mu}, \sigma_{\mathrm{host}}) \ p_{\mathrm{IGM}}(\mathrm{DM}_{\mathrm{E}} - \mathrm{DM}_{\mathrm{host}}|z, H_{0}) \ d\mathrm{DM}_{\mathrm{host}}.$$
where DM_{E} is the extragalactic contribution.

Bayesian framework

• Ignoring the redshift errors, then the electromagnetic likelihood is

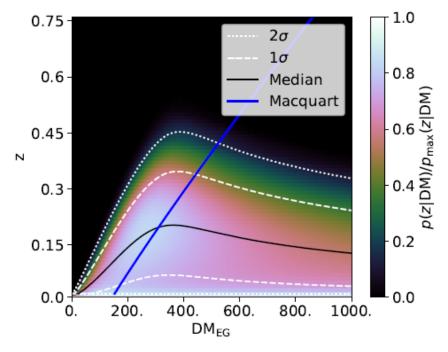
$$p(\mathbf{d}_{\mathrm{EM}}|z,\Omega) = \sum_{i}^{N_{\mathrm{candidate}}} \delta(z-z_i)\delta(\Omega-\Omega_i),$$

where (z_i, Ω_i) represent the redshift and sky location of the i-th host candidate.

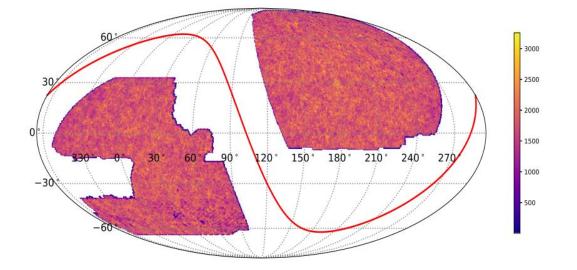
• Marginalizing over redshift,

$$p(\mathbf{d}_{\mathrm{FRB}}, \mathbf{d}_{\mathrm{EM}}|H_0, e^{\mu}, \sigma_{\mathrm{host}}) \propto \iint p(\mathbf{d}_{\mathrm{FRB}}|z, H_0, e^{\mu}, \sigma_{\mathrm{host}}) p(\mathbf{d}_{\mathrm{EM}}|z, \Omega) p(z, \Omega) d\Omega dz.$$

• Finally, we obtain

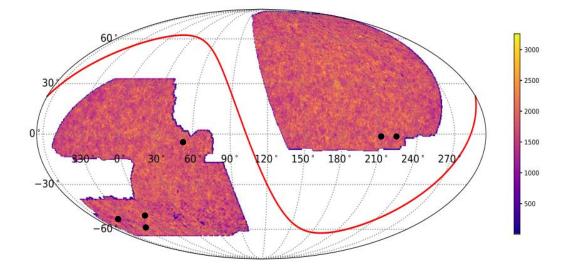

$$p(H_0|\mathbf{d}_{\mathrm{FRB}}, \mathbf{d}_{\mathrm{EM}}, e^{\mu}, \sigma_{\mathrm{host}}) \propto \frac{1}{N_{\mathrm{candidate}}} \sum_{i}^{N_{\mathrm{candidate}}} p(\mathbf{d}_{\mathrm{FRB}}|z_i, H_0, e^{\mu}, \sigma_{\mathrm{host}}) p(z_i, \Omega_i) p(H_0)$$

FRB data

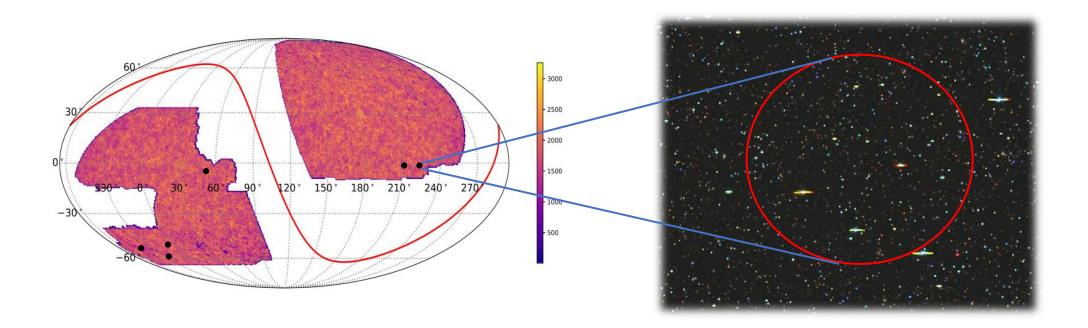

- Australian Square Kilometre Array Pathfinder (ASKAP) : ~ 60 FRB events.
- single-antenna ("Flye's Eye",or "FE") mode

$$\langle \mathrm{DM}_{\mathrm{cosmic}} \rangle = \int_0^z \frac{c \bar{n}_e(z') dz'}{H_0 (1+z')^2 E(z)}$$

• selection effect: only use the FRB data for which the Macquart relation is reliable.


Host candidate sample

• galaxy catalog: the DESI Legacy Imaging Surveys DR8 data

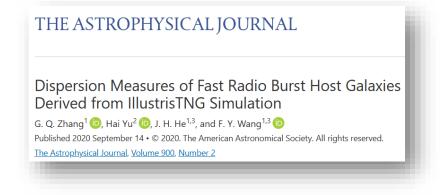

X. H. Yang et al., ApJ 909, 143 (2021)

Host candidate sample

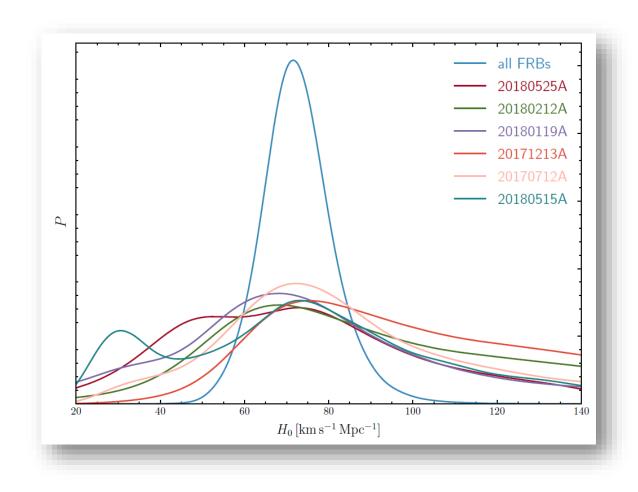
- galaxy catalog: the DESI Legacy Imaging Surveys DR8 data
- find the FRB events in the sky coverage of the galaxy catalog

Host candidate sample

- galaxy catalog: the DESI Legacy Imaging Surveys DR8 data
- find the FRB events in the sky coverage of the galaxy catalog
- use the corresponding galaxy sample as each FRBs' host candidates


FRB data used in this work

FRB event	RA	DEC	$\mathrm{DM}(\mathrm{pc}\mathrm{cm}^{-3})$	number of candidates
20170712A	$22h36m00s\pm15$ '	$-60^{\circ}57'00'' \pm 10'$	312.8	72
20171213A	$03h39m00s\pm30'$	$-10^{\circ}56'00'' \pm 20'$	158.6	154
20180119A	$03h29m18s\pm8'$	$-12^{\circ}44'00''\pm 8'$	402.7	43
20180212A	$14h21m00s\pm30'$	$-03^{\circ}35'00'' \pm 30'$	167.5	262
20180515A	$23h13m12s\pm7$	$-42^{\circ}14'46''\pm7'$	355.2	30
20180525A	$14h40m00s\pm30'$	$-02^{\circ}12'00''\pm6'$	388.1	112


• As an example, we finally use six ASKAP FRB events to illustrate the feasibility of this method.

The Hubble constant measurement from unlocalized FRBs

• Assuming fixed host galaxy parameters (e^{μ} and σ_{host}) based on cosmological simulation, the constraint on H_0 is

$\mathrm{e}^{\mu}(\mathrm{pccm^{-3}}) \sigma_{\mathrm{host}}$	$H_0 \ ({\rm kms^{-1}\ Mpc^{-1}})$
36.6 1.27	$71.7^{+8.8}_{-7.4}$

Summary

• Problem: The difficulty is getting the redshifts of most FRBs.

• Method: We develop the dark siren method to the FRB cosmology field.

• Result: Ignoring the systematic errors, we obtain the first H_0 measurement using unlocalized FRBs.

• Significance: Constrain cosmological parameters by using a large number of FRB data without known redshifts.