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Motivation 
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• Disadvantage: foreground residuals and signal loss
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 New method based on UNet  (Deep21-Makinen et al 2021, Ni et al 2022)

• Perform effectively with a necessary PCA preprocessing 

• PCA for removing the smooth foregrounds; UNet for the non-smooth contaminations

• However, PCA has HI signal loss, which is not expected to be recovered by UNet

 Our solution is still based on the UNet, but expect to avoid the HI signal loss



21cm simulations
 CRIME: 
• HI cosmological signal: generated from linear density and velocity field  

• Foregrounds:  

Santos et al (2005)

Galactic synchrotron anisotropic structure:

Isotropic structure by Gaussian realization:



21cm simulations

• 214.85 deg2

• volume ~460 h−1Mpc
• Grid: 64 × 64 × 64
• 192 sky patches

.

CRIME output Samples used in our analysis

• 700~764 MHz
• 0.859<z<1.029
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• Convolutional neural network

• Encoder-decoder with skip connections

• General model for image-to-image translation

Deeping learning method: UNet model
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UNet removing noise?

Redshift-psace halo field Real-space dark matter field

Deeping learning method: UNet model
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UNet Output：
βfg=4 βfg=256 βfg=1200 βfg=1800 βfg=2048

ν0-ν1

Toy model : testing UNet ability for cleaning foreground 

Target Truth

 We run the UNet by inputting THI + Tfg, where Tfg=αTfg
CRIME

CRIME simulated foreground



Cleaning model: Neighbor-band difference + UNet

UNet-fd

νi νi+1
Training samples: 140 
Validation samples: 12 
Test samples: 40 



Test I: 
• 21cm + foreground
• No beam
• No thermal noise 
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97%
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Test I : 21cm+foreground

Maximum recovery level of 
Deep21: PCA + UNet



RSD reconstruction

Test I : 21cm+foreground

This work

PCA



Test II: 
• 21cm + forgrounds
• Beam effect
• No thermal noise



No Beam Beam included

Test II : Adding beam effect



Test II : Adding beam effect

95%

90%

80%



Test II : Adding beam effect

• UNet-fd reconstruction has auto-correlation and cross-correlation P(k) ratios consistently at the 1σ level over the scales k 
< 0.1 h Mpc−1, with only 10% reduction of the cross-correlation power spectrum at k = 0.2 h Mpc−1

• Our method outperforms the PCA method, whose cross-correlation ratios are underestimated by about 60% 



Test II : Adding beam effect

RSD reconstruction

This work

PCA



Test III: 
• 21cm + foregrounds
• Beam 
• Thermal noise 



Input:

Output

Test III : Varying thermal noise



Test III : Varying thermal noise

• For βns = 0.1, both Rauto(k) and Rcross(k) are near to unity at 1σ level over scales k < 0.06 h Mpc−1, but have 10% and 
30% reduction at k = 0.1 h Mpc−1 and 0.2 h Mpc−1, respectively. 

• For βns = 0.5 and 1.0, the auto- and cross-correlation power are underestimated by about 10% and 20%, 
respectively ( k < 0.06 h Mpc−1).



Summary & Conlusions

1) Method: Cleaning foreground using U-Net + neighbor-band difference

2) Testing:  

• Foregrounds, beam and noise

• Statistics: image, temperature distribution, 1D & 2D P(k)

3) Conlusions:  

• Frequency-band difference can significantly improve network performance by reducing the amplitude range of 

the smooth foreground components and helping in the prevention of HI loss.

• The HI is recovered consistently at the 1σ level over the scales k < 0.1 hMpc−1

• RSD is also reconstructed successfull

• Our method outperforms outperforms PCA , whose cross-correlation ratios are underestimated by about 75% 



Temperature difference between neighboring frequency bands

Cross-correlation Cι between pure HI and neighboring band difference/auto-correlation Cι of the pure HI

large-scale correlations of the HI 
between narrow bands

foregrounds’ less correlation at wider bands



Temperature difference between neighboring frequency bands

To show how the neighbor-band difference correlated to the pure HI in different frequency width Δν = ν0 - ν1

Δν = 1: signal loss ⬅ large-scale correlations of the HI between narrow bands
Δν >2 : significantly greater errors ⬅ foregrounds’ less correlation at wider bands

Δν: minimize the HI correlation while maximizing the foreground correlation between neighboring bands. 

Temperature difference between neighboring frequency bands



Traditional foreground cleaning 
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• Assume a  strong frequency correlation 
• Reduce statistically foregrounds into a few main components
• Advantage: little prior knowledge of the foregrounds
• Disadvantage: foreground residuals and signal loss

Traditional foreground cleaning 



• Perform effectively with a necessary PCA preprocessing 

• PCA for removing the smooth foregrounds; UNet for the non-smooth foreground residual

• However, PCA has HI signal loss, which is not expected to be recovered in the UNet

New technique based on AI 

 Our solution is still based on the UNet, but expect to avoid the HI signal loss

Deep21: PCA+UNet (Makinen et al 2021, Ni et al 2022)



Convolutional neural network (CNN) 

Deeping learning method: UNet model

Halo field Dark matter field

Encoder-decoder with skip connections:

(1, 1, 1, 512)

DarkAI: Reconstructing the large-scale density field of dark matter using AI
(Wang, Shi, et al 2023, arXiv:2305.11431)



Temperature difference between neighboring frequency bands

Δν = 1: signal loss
Δν >2 : significantly greater errors

Δν: minimize the HI correlation while maximizing the foreground correlation between neighboring bands. 

To show how the neighbor-band difference correlated to the pure HI in different frequency width Δν



Test III : Varying thermal noise

tobs=200 hourstobs=1000 hourstobs= 2000 hours



Correlation matrix 
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