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• More complicate physics:

• other self-interaction of inflaton

• couplings to other fields

• Single field, gravity of inflaton


• consistency relation               fNL = 5
12 (1 − ns) ≈ 0.015
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Inflation

Mao et al. 2013

(Cosmic variance limited)

scale-dependent bias  
  Δb(k, z) = 2fNLδcr(b1(z) − 1)ℳ−1(k, z)

Dalal et al. 2008

Still want better?

21-cm PS from EoR
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21-cm Bispectrum
Methodology: Theory

Nonlinear gravitational evolution 

Nonlinear bias (second order bias)

Linear growth of PNG

PNG effect on bias

peculiar velocity of  
the intergalactic gas

Redshift Space Distortion 
(RSD) effect of  

the 21 cm signal

μ2 terms

μ6 termsμ4 terms

μ0 termsThe quasi-linear model for RSD 
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Results: Theory
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a Fast Fourier Telescope, 

Tegmark & Zaldarriaga, 2009
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Results
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PS constraints

BS constraints

joint constraints, PS+BS

Zhao, Mao & Wang, in prep.
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Thank you!
Bake-up follows



Constrain PNG with 21-cm PS from EoR
Background

Mao et al. 2013

PΔT(k, μ, z) = ( ̂δTb (zcos))
2

[b1(z) + Δb(k, z) + μ2
k]2 PL(k, z)

(Cosmic variance limited)

• Bispectrum (BS)

• Power Spectrum (PS)

scale-dependent bias  
Δb(k, z) = 2fNLδcr(b1(z) − 1)ℳ−1(k, z)

Statistics

& BS

2 DoF for a k mode 
k_perp, k_LOS

5 DoF for a triangle mode 
k1_perp, k1_z 

k2_x, k2_y, k2_z 
-> more samples!



Bias Model
simulation: 21cmFAST 
box length = 1000Mpc 
low resolution cell number: 512 x 512 x 512 
redshift = [8, 9, 10, 11, 12] 

 
 

20 realizations

Tvir = 50000K ± 10 %
ζ = 50 ± 10 %

Fitting EoR history and bias parameters from simulations.

xHI,m

b1

b2

k_max = 0.15 /MpcMethodology: Theory

Zhao, Mao & Wang, in prep.



Bias Model
Fitting bias parameters from simulations.

k_max = 0.15 /MpcMethodology: Theory

Zhao, Mao & Wang, in prep.



Non-Gaussianity of HI Distribution 
Methodology

What components does HI bispectrum contain?

δρHI
(x) = b1δm(x) + fNLbϕϕ(q) + 1

2 b2δ2
m(x) + fNLbϕδϕ(q)δm(x)

Nonlinear evolution

use Perturbation Theory to deal with 
the gravitational evolution of matter


Nonlinear bias (second order)

Linear growth of PNG


assume the PNG of matter field 
grows linearly.


PNG effect on bias

Potential comes into the bias theory, 
up to second order.



Bispectrum and Cross-bispectrum in Real Space
Equations 

Back-Up



Redshift Ranges
Methodology: Theory

RSD terms cancellation makes violent 
redshift evolution.  
Need more careful consideration at z>10.5.

z = 11 z = 11.3z = 10.5


