Exploiting HI intensity maps in real space: a direct search for large-scale halos and filaments

Denis Tramonte

21 cm Cosmology Workshop 2023 Northeastern University & NAOC, Shenyang

Xi'an Jiaotong-Liverpool University (XJTLU) Suzhou, China

July 16-19, 2023

Intro & motivation

- Searching for halos
- Searching for filaments
- Conclusions

Why HI, and what to do with it

Numerical simulations

HI effective tracer of low redshift cosmic web

(Popping+09,+14, Takeuchi+14, Horii+17)

Observational confirmation?

Nodes

HI content / distribution

Filaments

HI detection / upper limits

The neutral cosmic web

log(N_{HI})

32 Mpc/h

The HI 21-cm line

Spin-flip transition (HI ground state)

 $\lambda = 21.1 \text{ cm}$ v = 1420 MHz

Intensity mapping

low integration time

large angular coverage

statistical signal reconstruction

Foregrounds contamination

Combining HI maps and galaxy catalogs

Typically in Fourier space (cross-correlation power spectrum)

- Chang+10 GBT x DEEP2
 - Masui+13 GBT x WiggleZ
- Anderson+18 Parkes x 2dFGRS
 - Li+20 Parkes x WiggleZ
 - Wolz+22 GBT x WiggleZ, eBO
- Cunnington+23
- MeerKAT x Wiggle

Our goal: measurement in real space (positional stacking)

	z ∈ [0.53, 1.12]	~2 deg ²
	z ∈ [0.6, 1.0]	~41 deg ²
5	z ∈ [0.06, 0.10]	~1,300 deg
Ζ	z ∈ [0.73, 0.78]	~380 deg ²
SS	z ∈ [0.6, 1.0]	~100 deg ²
Ζ	z∈[0.400, 0.459]	~200 deg ²

Combining HI maps and galaxy catalogs

Chang+10	GBT x DEEP2	z ∈ [0.53, 1.12]	~2 deg ²
Masui+13	GBT x WiggleZ	z ∈ [0.6, 1.0]	~41 deg ²
Anderson+18	Parkes x 2dFGRS	z∈[0.06, 0.10]	~1,300 deg
Li+20	Parkes x WiggleZ	z∈[0.73, 0.78]	~380 deg ²
Wolz+22	GBT x WiggleZ, eBOSS	z ∈ [0.6, 1.0]	~100 deg ²
Cunnington+23	MeerKAT x WiggleZ	z∈[0.400, 0.459]	~200 deg ²

Our goal: measurement in real space (positional stacking)

Typically in Fourier space (cross-correlation power spectrum)

Parkes HI maps + 2dFGRS galaxies

The HI maps

Parkes Multibeam Receiver (Anderson+18)

Frequency

 $v_c = 1.3155 \text{ GHz}$ $v \in [1.28, 1.35] \text{ GHz}$ $\Delta v = 1 \text{ MHz}$

Redshift

 $z \sim 0.08$ $z \in [0.06, 0.10]$ $\Delta z \sim 8.2 \times 10^{-4}$

PCA foreground removal: both 10 and 20 removed modes cases

The galaxy catalog

2dFGRS (spectroscopic catalog, Colless+01) queried to match maps volume

Stacking individual galaxies on the HI maps

20 modes

Stacking results

HI halo emission clearly detected

Centrals show less concentrated, more irregular pattern

Clear difference in amplitude between different PCA maps

Randomization completely removes the signal

HI temperature profiles

Profiles extended over a few Mpc **These are not galactic HI profiles** Merged contribution of several galactic HI halos

Theoretical modeling

HI mass for halo virial mass

$$M_{\rm H\,I} = 2N_{10}M_{\rm v} \left[\left(\frac{M_{\rm v}}{M_{10}}\right)^{-b_{10}} + \left(\frac{M_{\rm v}}{M_{10}}\right)^{y_{10}} \right]$$

(Padmanabhan+17)

Radial HI distribution

$$\rho_{\rm H_{I}}(r) = \rho_0 \left[\left(\frac{3}{4} + \frac{r}{r_{\rm s}} \right) \left(1 + \frac{r}{r_{\rm s}} \right)^2 \right]$$

(Barnes+14, Padmanabhan+17)

... in practice: we don't know the halo masses

Fit for halo virial mass and HI concentration

 $C_{\rm HI} = R_{\rm vir} / r_{\rm s} \sim 4$

Multiple galaxy integrated emission

Marginal difference satellites / centrals

(*caveat*: galactic models for supergalactic scales)

Stacking pairs of galaxies on the HI maps

Identifying and stacking filaments

Halo contribution at nominal endpoints

Halo contribution fitted and subtracted

Stacking results

No apparent filament residual in the centre

Sum of fitted profiles enough to account for central emission

Upper limits on filamentary HI

... in agreement with predictions from numerical simulations

Neutral barvon HI brightness fraction temperature *X*HI $\delta_{\rm b} < 6 \times 10^{-4}$ $T_{\rm HI} < 7.5 \ \mu K$ $T_{\rm HI} \sim 1 - 10 \ \mu {\rm K}$ *X*_{HI} ~ 10⁻⁶ - 10⁻⁵ (**Horii**+17) $\delta_{\rm b}$ ~ 10 - 100 $T_{\rm HI} \sim \mu K$ (Takeuchi+17) (Takeuchi+17) HI column Filament thickness density $N_{\rm HI} < 3.4 \times 10^{15} \, {\rm cm}^{-2}$ $\Delta s < 3$ Mpc $N_{\rm HI} \sim 10^{15} - 10^{16} \,\rm cm^{-2}$ $\Delta s \sim 1 \text{ Mpc}$ (Takeuchi+17) (Kooistra+19)

-0.5

.. and what's next

Stacks on IM maps useful technique beside traditional cross-correlations

Effective detection of halo HI / possible benchmark for theoretical models

Upper limits on filamentary HI consistent with simulation

New generation maps (FAST, SKA) to constrain halo HI models (down to M_{vir} ~10¹¹Msun at z<0.03) and possibly detect filamentary HI

Proper foreground removal still major issue in IM analysis

HI in halos

Tramonte+20

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 498, 5916–5935 (2020) Advance Access publication 2020 September 15

intensity maps

Denis Tramonte $^{(1,2,3)}$ and Yin-Zhe Ma $^{(1,2,3)}$

¹Purple Mountain Observatory, No. 8 Yuanhua Road, Qixia District, Nanjing 210034, China ²NAOC-UKZN Computational Astrophysics Center (NUCAC), University of Kwazulu-Natal, Durban 4000, South Africa ³School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, South Africa

HI in filaments

Tramonte+19

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 489, 385–400 (2019) Advance Access publication 2019 August 5

mapping

Denis Tramonte,^{1,2}* Yin-Zhe Ma,^{1,2} Yi-Chao Li^{1,3} and Lister Staveley-Smith^{04,5}

¹School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, South Africa ²NAOC-UKZN Computational Astrophysics Center (NUCAC), University of Kwazulu-Natal, Durban, 4000, South Africa ³Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa ⁴International Centre for Radio Astronomy Research (ICRAR), M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia ⁵ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

The neutral hydrogen distribution in large-scale haloes from 21-cm

doi:10.1093/mnras/stz2146

Searching for H I imprints in cosmic web filaments with 21-cm intensity

