

21cm Cosmology Workshop 2023 & Tianlai Collaboration Meeting

The 21-cm forest as a simultaneous probe of dark matter and cosmic heating history

1923

自强不息·和

Yue Shao Yidong Xu, Yougang Wang, Wenxiu Yang, Ran Li, Xin Zhang, Xuelei Chen

Shao et al. 2023, Nature Astronomy (arXiv:2307.04130)

https://www.nature.com/articles/s41550-023-02024-7

Dark matter

Dark energy Primordial density perturbation First galaxies First black holes Thermal history Ionization history

21-cm probe of the cosmic dawn

CMB as background

Point source as background

21-cm Forest

Sensitive probe to T_{IGM}

 Unique probe to small–scale structures at cosmic dawn → Dark Matter properties

21-cm Forest: never even tried

• 21-cm global spectrum

EDGES-Low-band

SARAS 3

Barry et al. arXiv:2110.06173

Theoretical challenges

Large-scale environment: $\rho(\vec{x})$, $x_i(\vec{x})$, $T(\vec{x})$.

Main contributor: minihalos & ambient IGM

islandFAST, Xu et al. 2017

Observational challenges

*

Key strategy #1: multi-scale hybrid modeling

The mock 21-cm signals

Key strategy #2: 1D power spectrum

10 sources with $S_{150} = 10 \text{ mJy}$ at $z = 9 \quad \delta t = 2 * 50 \text{ hr}$

Cross-correlate two measurements to suppress the noise

$$Pig(\hat{s},k_{\parallel}ig) = \Big|\delta \widetilde{T'}ig(\hat{s},k_{\parallel}ig)\Big|^2igg(rac{1}{\Delta r_z}igg)$$

Thermal Noise:

$$P^N = rac{1}{\sqrt{N_s}} igg(rac{\lambda_z^2 T_{
m sys}}{A_{
m eff}\Omega}igg)^2 igg(rac{\Delta r_z}{2\Delta
u_z \delta t_{0.5}}igg)$$

Statistical error:

$$P^S = \sigma_P(k)/\sqrt{N_s\cdot N_m}$$

Shao et al. 2023 Nature Astronomy

1D power spectrum: Two birds with one stone

Scientifically:

- DM particle mass
- Cosmic thermal history

Technologically:

- Increase the sensitivity
- Breaking the degeneracy

SKA forecasts

(10 sources with $S_{150} = 10 \text{ mJy}$ at z = 9)

High-redshift radio sources

High-z radio-loud quasars

J1427+3312 at z = 6.12 (McGreer et al. 2006) J1429+5447 at z = 6.18 (Willott et al. 2010) J0309+2717 at z = 6.10 (Belladitta et al. 2020) VIK J2318–3113 at z = 6.44 (Ighina et al. 2021) P172+18 at z = 6.82 (Bañados et al. 2021) J233153.20+112952.11 at z = 6.57 (Koptelova & Hwang 2022) ILTJ1037+4033 at z = 6.07 (Gloudemans et al. 2022) ILTJ1133+4814 at z = 6.25 (Gloudemans et al. 2022) ILTJ1650+5457 at z = 6.06 (Gloudemans et al. 2022) ILTJ2336+1842 at z = 6.60 (Gloudemans et al. 2022) DES J0320-35 at z = 6.13 (Ighina+2023) DES J0322-18 at z = 6.09 (Ighina+2023)

Radio afterglows of high-z GRBs

GRB090423 at z = 8.1 (Salvaterra+2009) **GRB090429B** at z = 9.4 (Cucchiara+2011) A few hundred radio quasars with > 8 mJy at z ~ 6 are expected (Gloudemans+2021)

~ 2000 sources with > 6 mJy at 8 < z < 12
 (Haiman+2004)

The expected detection rate of luminous GRBs from
 Population III stars is 3 – 20 yr-1 at z > 8

21-cm forest: a simultaneous probe of DM & first galaxies

nature astronomy

Article

https://doi.org/10.1038/s41550-023-020

The 21-cm forest as a simultaneous probe of dark matter and cosmic heating history

Received: 16 May 2022	Yue Shao [©] ¹ , Yidong Xu [©] ²³ [∞] , Yougang Wang ²³ , Wenxiu Yang [©] ²⁴ , Ran Li ²⁴⁵ , Xin Zhang [©] ¹⁶⁷ [∞] [®] [®] [№] [№] [№]
Accepted: 6 June 2023	
Published online: 06 July 2023	
Published online: 06 July 2023 Check for updates	The absorption features in spectra of high-redshift background radio sources, caused by hyperfine structure lines of hydrogen atoms in the intervening structures, are known collectively as the 21-cm forest. They provide a unique probe of small-scale structures during the epoch of reionization, and can be used to constrain the properties of the dark matter (DM) thought to govern small-scale structure formation. However, the signals are easily suppressed by heating processes that are degenerate with a warm DM model. Here we propose a probe of both the DM particle mass and the heating history of the Universe, using the one-dimensional power spectrum of the 21-cm forest. The one-dimensional power spectrum measurement not only breaks the DM model degeneracy but also increases
	the sensitivity, making the probe actually feasible. Making 21-cm forest
	simultaneously determine both the DM particle mass and the heating level in the early Universe shedding light on the nature of DM and the first galaxies.

Multi-scale hybrid modeling

1D power spectrum

- Make the probe actually feasible by increasing sensitivity
- Constrain simultaneously DM & thermal history as it breaks the degeneracy

Two birds with one stone

- DM particle mass: to be probed in an unexplored era in the structure formation history
- Cosmic heating history: probes the first galaxies

Complement to global spectrum & 21 cm tomography

Northeastern University

Thank you! The 21-cm forest as a simultaneous probe of dark matter and cosmic heating history

https://www.nature.com/articles/s41550-023-02024-7

