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What can “21-cm
Cosmology” tell us?

The CMB Radiation versus the High-z 21-cm Signal

A still photograph versus a feature film

21 cm Cosmology Workshop, July 17-21, China



What can “21-cm Cosmology” tell us?

The tomography of Hl emission/absorption is a treasure trove of
information for (astro)physics, cosmology & fundamental physics.
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What can “21-cm Cosmology” tell us?

The brightness of the 21-cm signal (in Kelvin; Rayleigh-Jeans regime) that
can be measured with radio telescopes is given by:
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What can “21-cm Cosmology” tell us?

Global Signal (left) and Intensity Fluctuations (right)
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What can “21-cm Cosmology” tell us?

Between z~200* and z~6"*, neutral hydrogen is a key tracer of fundamental physical
processes (early stages) and unique astrophysical processes (later stages)
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What can “21-cm Cosmology” tell us?
Numerical Models

Many “ingredients” in the 21-signal models are effective descriptions of the
underlying complex physical processes (sub-grid physics) that we hope to
connect to these processes on smaller (galaxy/stellar) scales.
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What can “21-cm Cosmology” tell us?

Discovery Time-Scales

2030-2050
DM/DE/particle physics A

Physics of Gravity & GR
Dark AgeS Gravitational waves Space/Lunar based

Instruments

Primordial black holes
Inflation

Appearance of first stars (Poplll?)/BHs

, Ly-a/UV radiation field
Cosmic Dawn impact of Baryonic Bulk Flows SKIVHERA lenuFar/
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First X-ray heating sources
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Why go to space for
21-cm Cosmology?

Observing the 21-cm signal at (z>>10) is very hard!!

21 cm Cosmology Workshop, July 17-21, China



Ground-based interferometry experiments

Globally (China, India, South Africa, US, Australia, Netherlands, France, etc.)
many efforts are underway to detect the 21-cm signal from z~6 to z~25
with ground-based interferometers — experiments are extremely hard!

Past/Current
instruments
focussing
mostly on z<10

Upcoming
instruments
in coming
decade
focussing
mostly on
Z~6-25




Ground-based interferometry experiments

Some challenges to detect the 21-cm signal are unique to earth-based
interferometers (ionosphere) or worse (RFI, instrument stability) on earth.
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Ground-based interferometry experiments

Current experiments (incl. LOFAR) are getting closer to the 21-cm signal in the EoR, but
are far removed from a detection in the Cosmic Dawn and Dark Ages, let along image it.
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10° 3 Ewall Wice 2016 (MWA)
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Ground-based global experiments

In 2018 a detection of the global 21-cm signal of neutral hydrogen was claimed by
the EDGES team. Not the same as what interferometers do, but just as exciting.

Age of the Universe (Myr)
150 200 250 300
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Brightness temperature, T,, (K)

26 24 22 20 18 16 14
Redshift, z

Bowman et al. 2018 (Nature)
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Ground-based global experiments

If genuine, it requires some “exotic” physics, e.g. the cooling of baryons

by scattering off dark matter to explain the depth of the signal (-600mK).

Global-signal models; some affect the Dark Ages
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Ground-based global experiments

On the other hand, the SARAS3 experiment (India) fails to see this signal, although
the frequency coverage is limited and significance is not yet very high (~30).

A global 21-cm signal detection requires spectral o
smoothness of <104 over tens of MHz ! s000
. 200
«© 1.00 | | | | | | |
g 0;5 WWMM
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Singh et al. 2022 (Nature)



Challenges facing 21-cm observations
from the Earth’s surface

» Foregrounds — (extra)Galactic emission exceeds the 21-cm
signal by 3-6 orders of magnitude (from z~6-200)

* Interference signal: human-made radio-frequency signals
strongly out-power the 21-cm signal at many frequencies

- Instrumental stability: the “gains” of the receivers vary with
time, frequency, direction. There is mutual coupling and multi-
path propagation due to complex environment.

- lonosphere: causes phase and amplitude errors in the data as
function of baseline, time, frequency and direction.

Most challenges are largely mitigated in space, in particular far
away from Earth (L2), in lunar orbit or on the lunar far-side:
No ionosphere, >80dB RFI suppression, stable environment



Many ongoing initiatives for space missions/
experiments — US, China, India

/'

DAPPER/ROLSES/LUSEE/FARSIDE  PI: Burns

128 dual polarisation antennas deployed across
a 10 km area on the lunar far side (Dark Ages: z>36)

Di-pole receiver in orbit to measure the
global 21-cm signal (z~83-36)
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DSL Pl: Chen

Series (6-8) of tri-pole receivers in lunar orbit to measure the
global 21-cm signal and do interferometry

N
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PRATUSH PI: Singh

PRATUSH concept model hardware
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Digital Receiver

Antenna

Mono-pole receiver in orbit to measure the
global 21-cm signal
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\What about initiatives
in NL/Europe?

Many past proposals: ALFIS, DARIS,
SURO, LRX, OLFAR going back 30

TU years (not just 21-cm science) and one
De"’“nf»e,s.De/ft realised system: NCLE (in lunar L2)

9'0 S
= Eng;,
"”'fng

Credit image: George Miley



NCLE — a pilot experiment in lunar L2
between China and the Netherlands

Launched in May 2018; part of Chang-e’4; commissioning ongoing;
tripole role-out planned for mid-Nov 2019
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The holy grail:

Probing the
Dark Ages?

Observing the 21-cm signal from the Dark Ages
(z>30) allows us to test fundamental physics on par
with the CMB but as function of Cosmic Time!

21 cm Cosmology Workshop, July 17-21, China



Fundamental Key Questions that a space/lunar-based low
radio-frequency mission can address via the 21-cm signal

The standard model of physics plus the standard
Cosmological model exactly predict the 21-cm signal
of neutral during the Dark Ages: “simple” linear theory.

During the Cosmic Dawn (g)astrophysics is added.

Dark Ages Cosmic Dawn
(z~30-200) (z~10-30)
Fundan?ental - Physics of gravity . First stars (Pop lII1l) Foundatlopal
physics - Gravitational waves + Formation of first galaxies astrophysics
* Dark Matter & Dark Energy « Stellar remnants/HMXRBs
* Particle physics (e.g. + Seeds of SMBHs

WIMPs, axions, neutrinos) « Synthesis of metals and

* Primordial black holes enrichment of the IGM

* Inflationary physics « Molecular cooling
* Non-Gaussianity

« Baryon-Dark-matter
interactions



ALO — Astrophysical Lunar Observatory

What is needed for a detection of the early Cosmic Dawn and Dark Ages?

Basic Objectives Basic Requirements

- Space-based interferometer

+ Collecting areas of 0.1-1-10-100 km?2

All/half-sky field of view

- Enable direct imaging of the 21-cm signal  High filling factor (i.e. compact array)
during (early) Cosmic Dawn - Large bandwidth covering 1-100MHz

More than 5-yr lifetime

- Enable a 10-sigma statistical detection of
the 21-cm signal during the Dark Ages

Potential Mission Concepts Potential locations

- Large free-floating inflatable structures

- Swarm of free-floating/connected (small) * Lunar surface: far-side or poles
satellites « Lunar orbit
- Array of di/tri-poles on lunar surface « “Deep” space (e.g. Sun-Earth L4,5)

 Allow scalability



Astrophysical Lunar Observatory (ALO)

« Concept for a low-frequency radio telescope on
the lunar surface (pole/far-side)

« Science payload on EL3 landers
- Both global 21-cm signal receivers (pole/far-side) A
and array for 21-cm power-spectrum/ STROPH Sic
Assess L LUN CDF St
Ment of 4 AStroth; o Bs udy :epon
SICaI
efL R

tomography observations (lunar far-side)
« Covering Cosmic Dawn and Dark Ages redshifts
Of the MOOn

(z>~15), needing >104 hours of integration.
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European Large Logistics Lander (concept)




Astrophysical Lunar Observatory (ALO)

Concurrent Design Facility
study conducted with ESA

over the summer of 2021 CDF Study Report
OBSERVATORY

ysical Lunar Observatory
on the farside of the Moon

“The Astrophysical Lunar Observatory (ALO)

mission is notionally the 3rd mission concept

being studied in the context of the European

Large Logistic Lander (EL3) project, currently in

phase A/B1 aiming at program subscription at
ESA Ministerial Council in 2022”

nnnnnnnnnn

internal pre-phase A or Level-0 assessment studies



Astrophysical Lunar Observatory (ALO

A in-depth study over the course of several months involving the
joint science team and an interdisciplinary team of ~40 from ESA
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The basic idea behind ALO

A discovery mission to observe the Dark Ages
(z>30 to ~200) and the late Cosmic Dawn
(z~15-30) using the 21-cm line of neutral hydrogen.

Neither era of the Universe has been explored by
any instrument to this date. A unique mission.

Requires a very large-area low-frequency
space-based interferometer.

Enables ESA to play a leading role
iIn 21-cm cosmology.



Astrophysical Lunar Observatory (ALO)

A B * Location on the lunar poles
or far side (e.g. Tsiolkovsky)
shielded from lunar/earth
RFI, mid-latitude for
Improved uv-coverage and
sufficient for solar power.
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0 day and small part during
lunar night.
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Astrophysical Lunar Observatory (ALO)

Basic concept of NxN array (power-spectrum)

Example of
32x32 array

with 4 outriggers (global signal)
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Astrophysical Lunar Observatory (ALO)

A conformal grid-like array (allowing for a spatial FFT correlation), shielded
from (other) activities on the lunar surface, with up to four outrigger
global 21-cm receivers placed at a distance.
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What does ALO aim for?

Power-spectrum measurements & Global 21-cm signal
of the Dark Ages and Cosmic Dawn

21 cm Cosmology Workshop, July 17-21, China



ALQO can directly image the Cosmic Dawn

ALO is able to directly image the 21-cm signal during the Cosmic
Dawn and provide crucial information of very fundamental physical
process (e.g. DM-baryon interaction in this case) unlike a statistical

(e.g. power-spectrum) detection, and observe the Dark Ages.

a 21-cm intensity b Baryon—dark matter velocity

vy 5T

-100

-200

-300 =

-400

-500

-600

RRRRR Barkana 2018



Other science

21-cm Cosmology

The Astronomical Lunar Observatory

Power-spectrum sensitivity (standard model; 104 hrs)

:r:.t:r:nas Dark Ages Power Spectra (DA) Cosmic Dawn Power spectra (DP)
4x4 S/IN << 1 S/N > 1 for z = 20, k from 0.003 to 0.1
8x38 S/IN << 1 S/N > 1 forz = 22, k from 0.003 to 0.1
16 x 16 S/N << 1 S/N > 1 for z = 22, k from 0.003 to 0.2
32 x 32 SIN << 1 S/N > 1 for z = 25, k from 0.003 to 0.1
64 x 64 S/IN << 1 S/N > 1 for z = 27, k from 0.003 to 0.1
128 x 128 S/N <1 S/N > 1 for z = 28, k from 0.003 to 0.1
\1024 x 1024 S/N ~ 10 forz =50, k from 0.002t0 0.2 S/N ~ 10 for z = 28, k from 0.003 to 1 )

Interferometers are extremely flexible instruments: ALO is a scalable experiment
that can start small and grow over time and do science from day one.



The Astronomical Lunar Observatory
Global 21-cm Signal Sensitivity (standard model)

anht:-n(r)\fas Global Dark Ages signal (DA) Global Cosmic Dawn signal (CD)
Pilot for array if on earlier For z =80 (17.5 MHz), For z = 20 (70 MHz),
EL3 (eg on po|es) ; bandwidth 10 MHz, bandwidth 1 MHz,
deltaT = 10 mK: deltaT = 10 mK:
Faster signal detection ( t_int = 2000 hours. ) ( t_int=17 hours. )
Forz =280 (17.5 MHz), Forz =20 (70 MHz),
; bandwidth 10 MHz, bandwidth 1 MHz,
Better control of deltaT = 10 mK: deltaT = 10 mK:
systematics t int = 1400 hours. t int=12 hours.
Forz =380 (17.5 MHz), Forz =20 (70 MHz),
bandwidth 10 MHz, bandwidth 1 MHz,
Different designs? ’ deltaT = 10 mK: deltaT = 10 mK:
t int=1150 hours. t int=10 hours.
Diﬁerent locations Forz =80 (17.5 MHz), Forz =20 (70 MHz),
" bandwidth 10 MHz, bandwidth 1 MHz,

deltaT = 10 mK: deltaT = 10 mK:
M t int = 1000 hours. t int = 8.5 hours.




Astrophysical Lunar Observatory (ALO)

Power-spectrum sensitivity for 16 (4x4), 1024 (32x32), 16384 (128x128) receivers:

Compact (f=1) array, 5m dipoles, BW=10MHz, 104h integration, half-sky

0 _-7 )\ O
10° R 2 30
jie ~ 75
. 30
100 ~
P 125
~ 150
c 107t —
Y ., — 150 Mondal & Barkana 2023
102 .., —— 125
, . — 75 Configurgtion ~N
10-3 .. —— 50 . D C B A
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[Note an array of 128x128 5x5m dipoles has “only” Ae+=0.4km?2 at 30MHZz;

Larger Aeff than the SKA-low core and 100x SKA-low’s FoV at 50MHZ]
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* The 21-cm signal is the only tracer of the Dark Ages and potentially the only
tracer of the early Cosmic Dawn. Only space-based interferometers can
characterise this signal from z~15 to z~50 and beyond (below ionospheric cutoff).

- Detection of the 21-cm signal from the Dark Ages enables fundamental (astro-)
physical processes to be studied — DM/DE, inflation, GWs, first stars, etc.

- Detection requires Ae#=0.1, 1, 10, 100 km2 (depending on science case) in a
compact configuration: feasible in space with lightweight material array, swarms of
micro-satellites, etc. TRL levels reasonably high, but development needed.

- Enabling DA detections from Earth is excluded by ionosphere, human-generated
RFI and a relatively unstable environment: a space-based mission is necessary.

- The lunar orbit/far-side or deep space provide excellent environments. On the lunar
surface one could piggy-back on other exploratory missions).

- ALO encodes these concepts and science motivations. Missions are scalable with
science from day one. Building on many earlier concepts and pilots (ALFIS,

DARIS, SURO, LRX, OLFAR, and NCLE, resp.). Also enables other science (e.qg.
exoplanets) and connects to global efforts (e.g. US, China, India)

21 cm Cosmology Workshop, July 17-21, China



