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1.1 Necessity of map-making 

4

• Map-making is a crucial step in radio observations, bridging the gap between the 
collected TODs and scientific analysis

• important to produce pixelized maps from TOD, with as much accuracy as possible

t i m e- o r de r e d 
d a t a( T O D)

S k y  M a p D a t a A n al y s is

Planck 2018Hu 2021
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1.2 Issues in map-making

5

Scanning pattern of a single-
aperture telescope

uv-coverage from 
interferometric observation

●the TOD’s sampling is uneven and irregular in practice

●Map-making usually is an ill-posed inverse problem—observational effects such as scan
strategies, noise, complex geometry of the field and data excision like RFI flagging

●unbiased estimate with minimal variance is a big challenge

(ALFALFA） （VLA）
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2.1 Traditional estimator

7

●The concept of Map-making is to apply a constructed linear operator W on

data

● 𝑑𝑑
→

= 𝐴𝐴𝑚𝑚
→

+ 𝑛𝑛
→
：

𝑚𝑚
^

= 𝑊𝑊 𝑑𝑑
→ • The inverse of the matrix 𝑚𝑚 may not exist, and 

therefore 𝑊𝑊 may not exist

• Even if 𝑊𝑊 exists, the computational complexity of the 

inverse operation can reach 𝑂𝑂(𝑁𝑁3); computationally 

intractable if 𝑁𝑁𝑝𝑝 ∼ 106

• RFI and … subtractions in data preprocessing, leading 
to a degeneracy in the estimated map 

• An accurate estimate of the noise is required, i.e., the 

covariance matrix 𝑁𝑁 of the noise needs to be known

• The error estimate for each pixel is rather difficultTegmark, M (1997)



2.2 Traditional estimator: gridding approach

8

●The gridding: based on a direct weighted interpolation of TOD

Mangum J G(2007)

w: a convolution kernel 

Drawback:

●pixel-level-error estimate is difficult

●Gridding will further reduce the map resolution

Before and after gridding  Luo(2018)𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2 + 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

Wang (2021)

Convolution of TOD in a certain region
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3.1 Inverse problem

10

• Inverse problems are common in scientific research, where observations are utilized 
to infer physical parameters (i.e., map here) 

• The forward modeling process (map → TOD) is well understood

• TOD → map is of an inverse problem

https://hci.iwr.uniheidelberg.de/vislearn/inver
se-problems-invertible-neural-networks/

Ambiguous Inverse Problems (ill-posed)

• one may apply statistical inference techniques to 
express the ambiguities in form of conditional 

probabilities 𝑝𝑝(𝑥𝑥|𝑦𝑦)
• classical Bayesian methods become very expensive 

even for moderate real-world problems



3.1 Resolving the ambiguity

11

• Bijective mapping: introducing additional latent variables, 𝑧𝑧, to preserve the 
information that would otherwise be lost during the forward process

• The mapping 𝑥𝑥 [𝑦𝑦, 𝑧𝑧] becomes a one-to-one correspondence (well posed)

• In other words, 𝑝𝑝(𝑥𝑥|𝑦𝑦) has been reparametrized into a deterministic function 
𝑥𝑥 = 𝑓𝑓(𝑦𝑦, 𝑧𝑧) with adding variable 𝑧𝑧

Intuitively, the ambiguity of inverse 
mapping is transformed into 𝑝𝑝(𝑧𝑧).



3.2 Training process

12

• train INN to solve the well-posed forward process 𝑥𝑥 → 𝑦𝑦 in a supervised 
manner, instead of the ill-posed inverse process

• the latent variables 𝑧𝑧 to be independent of 𝑦𝑦, and to follow an easy-to-
sample-from distribution, like 𝒩𝒩(0,1).

• use  L2 (to match the data)+ a Maximum Mean Discrepancy (MMD) loss (to 
match the normal distribution) for training INN



3.3 Basic building block of INN

13

the affine coupling layer popularized by the Real NVP model. 

Inverse of the whole affine coupling layer: recover [𝐮𝐮1,𝐮𝐮2] from [𝐯𝐯1, 𝐯𝐯2]

To construct deep invertible networks, just chain these layers like ResNet blocks.



3.4 Conditional Invertible Neural Networks

14

𝑧𝑧 = 𝑓𝑓(𝑥𝑥|𝑦𝑦,𝜃𝜃)

𝑥𝑥 = 𝑓𝑓−1(𝑧𝑧|𝑦𝑦,𝜃𝜃)

• under the condition (𝑦𝑦), the distribution 
of 𝑥𝑥 is obtained by sampling 𝑧𝑧 from 
Gaussian distribution; naturally obtain 
the error of 𝑥𝑥

• changed the role of y on the input side, 
while introducing the advantage of 
conditional input

Ardizzone (2019)

• cINN: a modification of INN, enabling simpler training



3.5 Structure of invertible neural network (I)

15

The dedicated network structure was found to reconstruct the sky map effectively



16

CINN

3.6 Structure of invertible neural network (II)



CONTENTS

17

1

2

3

4

The issue of sky map reconstruction

Review the existing methods

Conditional invertible neural network(CINN) 

5

Results of a FAST-like survey from cINN  

Summary and Outlook



4.1 TOD generation and training samples 
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• survey simulation: based on the FAST
configuration

• drift scan: consisting of a 19-beam receiver in the
frequency range of 1100–1120 MHz, 20 channels

• coverage: a sky area of over 300 square degrees

• observation time: 2020.5.4–5.28, totaling 25 days

• an integration time of 1 s per beam and a total
observation time of 14400 s/day, the total
number of time samples for all 19 beams
amounts to 25×14400×20×19 ~ 108

• thermal noise (𝑇𝑇sys in 0-25 K) added

• Data pre-possessing: due to the TODs’ 
varying length and large data size, 
preprocessing is needed before feeding into 
the network

• TODs are gridded onto a 2D flat-sky maps, 
each having an area of 4.3∘ × 4.3∘ and a 
resolution of 128 × 128 



4.2 Evaluation Metrics 
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• the mean square error (MSE) : mean distance between two maps 

• the Peak Signal-to-Noise Ratio (PSNR): evaluating the reconstruction quality in dB

• the structural similarity index measure (SSIM) 



4.3 Results of map reconstruction
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• 𝑃𝑃(𝑥𝑥|𝑦𝑦) estimated by 200 
reconstructed maps 
through drawing latent 
variables 𝑧𝑧 from Gaussian 

• std and residuals are about 
0.01 K，1% level of true 
map

• good reconstruction quality 

True               prediction                std                         residual



4.3 Results of map reconstruction
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• randomly selected a row of map

• the mean vs. the true

• pixel error: 200 realizations of the 
latent variables z from normal 
distribution

• 95% C.L.

Reconstruction mean and errors for each 
pixel can be precisely quantified. 



4.4 MSE, PSNR, SSIM vs. frequency
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• good performance in all three 
metrics across frequency

over all test samples:



First introduce cINN to solve the map-making problem

Good performance in reconstruction has been achieved

cINN framework has the potential to tackle ill-posed problems in astronomy,
like radio interferometric observations, where imaging can be particularly
challenging due to sparse uv coverage

5. Summary and Outlook

23



Backup
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4.5 Performance against noise level

25

• 𝑇𝑇sys in training：0-25K; 𝑇𝑇sys in generalization tests：0-160K

• As the noise level increases, the SSIM value decreases from 0.89 to 0.85

• MSE and PSNR remain essentially constant with increasing noise level

95% C.L.
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2.1 Modeling of sky map reconstruction

26

●Observation equation: 𝑑𝑑
→

= 𝐴𝐴𝑚𝑚
→

+ 𝑛𝑛
→

●m denotes sky map, d is for TOD, n is for noise

●Dimension: d has 𝑁𝑁𝑡𝑡, m has 𝑁𝑁𝑚𝑚, A has 𝑁𝑁𝑡𝑡 × 𝑁𝑁𝑚𝑚, n has 𝑁𝑁𝑡𝑡
●The Eq. can be extended to the multi-frequency and multi-beam case

Hu (2021)



Main structure
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Fully connected structure:
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